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Abstract 

Weibull distribution is widely employed in modeling and analyzing 
lifetime data. The present paper considers the estimation of the scale 
parameter of two parameter Weibull distribution with known shape. 
Maximum likelihood estimation is discussed. Bayes estimator is obtained 
using Jeffreys’ prior under linex loss function. Relative efficiency of the 
estimators are calculated in small and large samples for over-estimation and 
under-estimation using simulated data sets. It is observed that Bayes 
estimator fairs better especially in small sample size and when over 
estimation is more critical than under estimation.  

 

INTRODUCTION 

The Weibull distribution is one of the most widely used distributions for 
analyzing lifetime data. It is found to be useful in diverse fields ranging from 
engineering to medical sciences (see Lawless [4], Martz and Waller [6]). The 
Weibull family is a generalization of the exponential family and can model data 
exhibiting monotone hazard rate behavior, i.e. it can accommodate three types 
of failure rates, namely increasing, decreasing and constant. The probability 
density function of the Weibull distribution is given by: 

f(x| βα , ) = ]exp[1

αα
β β

β xx −−  ;   x ,0≥ , β >0 (1) 

where the parameter β  determines the shape of the distribution and  is the 
scale parameter. In Weibull lifetime analysis it is frequent case that the value of 
the shape parameter is known. For example, the exponential ( ) and Rayleigh 
distributions are obtained when β =1 and β =2, respectively. Soland [9]  gives 
a justification for this situation. 
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The maximum likelihood (ML) method of estimation is quite efficient and 
very popular. In Bayesian approach, a prior distribution for the parameter is 
considered and then the posterior distribution is obtained by conditioning on the 
data and after that the inference is done based on the posterior. Ahmed et al.[1], 
have considered ML and Bayesian estimation of the scale parameter of Weibull 
distribution with known shape and compared their performance under squared 
error loss. 

The squared error loss denotes the punishment in using θ̂  to estimate θ  
and is given by L (θ̂ ,θ ) = (θ̂ -θ ) 2 .This loss function is symmetric in nature 
i.e. it gives equal weightage to both over and under estimation. In real life, we 
encounter many situations where over-estimation may be more serious than 
under-estimation or vice versa. Varian [10] introduced a very useful asymmetric 
linex loss function given by 

L (δ ) = exp[aδ ]-aδ -1;     δ = θ̂ -θ , a≠ 0 (2) 

Here, a determines the shape of the loss function. For a>0, over-estimation 
is more heavily penalized, the same being true for under-estimation when a<0. 
For |a|→0, this loss is almost symmetric and not far from a squared error loss 
function. Zellner [11] discussed Bayesian estimation and prediction using linex 
loss. The invariant form of the linex loss function (see Pandey [7], Pandey et 
al.[8] ) which is more suitable in the case of estimation of scale parameter is 
given by 

L (δ ) = exp[aδ ]-aδ -1;     δ =
θ
θ̂ -1 , a≠ 0   (3)     

In estimating mean time to failure, over-estimation and under-estimation 
should not be given equal importance. Over-estimation could lead to fixing a 
guarantee period beyond the true mean lifetime, which in turn could lead to 
considerable loss for the producer. Thus, an asymmetric loss, giving unequal 
weightage to over and under estimation, seems more appropriate for this 
problem. 

In this paper, ML estimator and Bayes estimator of the scale parameter of 
the Weibull distribution is considered under loss (3), with the assumption that 
the shape parameter is known. The plan of the paper is as follows. In section 2, 
the ML estimation of α  is reviewed. Section 3 is devoted to the derivation of 
the Bayes estimator under invariant form of the linex loss using Jeffreys' prior. 
In section 4, a simulation study is discussed and results are presented. 
Concluding remarks are presented in section 5. 
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1.    Maximum Likelihood Estimation 

Maximum likelihood estimation of the parameters of Weibull distribution 
is well discussed in literature (see Cohen [2] and Mann et al.[5]). 

       Let x  = (x1, x 2 ,…, x n ) be a sample of size n from a Weibull 
distribution with parameters α and β . The likelihood function is given by 

L (α , β | x ) = ∏
=

−
n
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As the shape parameter β  is assumed to be known, the ML estimator of 
α  is obtained by solving the equation 

α
βα

∂
∂ )x |,(log L  = 0, 

which gives us 
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Thus the ML estimator of α  is given by 
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 (4)             

2.    Bayesian Estimation 

THE PRIOR DISTRIBUTION 

Quite often, the derivation of the prior distribution based on information 
other than the current data is impossible or rather difficult. Moreover, the 
statistician may be required to employ as little subjective input as possible, so 
that the conclusion may appear solely based on sampling model and the current 
data. 

Jeffreys [3] proposed a formal rule for obtaining a non-informative prior 
as 
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g(θ ) |)I(det | θ∝  

where θ  is k-vector valued parameter and I(θ ) is the Fisher's information 
matrix of order k ×k. In particular, if θ  is a scalar parameter, Jeffreys' non-
informative prior for θ  is g(θ ) )(θI∝ . Thus, in our problem, we consider the 
prior distribution of α  to be 

g(α )
α

αα 1.)()( kgI =⇒∝ . 

where k is a constant. 

    The posterior distribution of α is given by 
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where f( α|x ) is the joint density of  and is given by 
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Hence, the posterior distribution of α  is given by 

x
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ESTIMATION UNDER LINEX LOSS 

To obtain the Bayes estimator, we minimize the posterior expected loss 
given by 
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Solving 0
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ρ , we obtain the Bayes estimator as 
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3.    Simulation Study 

In this study, we have generated random samples from Weibull 
distribution and compared the performance of ML and Bayes estimator based 
on them. We have chosen sample size n = 5, 10, 15, 20, 50, 100 to represent 
both small and large sample, unlike Ahmed et al.[1], who have considered only 
large sample size. For the scale parameter, we have considered α = 0.5 and 1.5. 
The shapeβ has been fixed at 0.8, 1.0 and 1.2, representing decreasing, constant 
and increasing hazard rates respectively. All six possible combinations of the 
parameters have been considered. We have taken a=1,2,-1,-2 in linex loss 
considering varying weightage for over-estimation and under-estimation. The 
number of replications used was M=1000. The risk of the estimators were 
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calculated by the formula 

Risk(α̂ )=
M
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The relative efficiency of the Bayes estimator with respect to the ML 
estimator is given by 

RE=
)ˆ(
)ˆ(

b

m
Risk
Risk

α
α

   (7) 

The simulation was run using the package  R v.(2.9.1) (freely available 
from http://www.r-project.org) 

Table 1-6, appended at the end of the paper, give the relative efficiency of 
the Bayes estimator with respect to the ML estimator. Each table corresponds to 
a particular combination of parameter values and gives the relative efficiency 
for different sample sizes over 4 different values of a. 

We note that Bayes estimator fairs better than or equal to ML estimator in 
general, whereas under squared error loss function Ahmed et al.[1] concluded 
that ML estimator is better than Bayes estimator. In particular, the Bayes 
estimator outperforms the ML estimator in small sample size when over-
estimation gets more weightage than under-estimation. In large samples, the 
estimators are almost equally efficient. 

4.    Concluding Remarks 

The present paper explores ML and Bayesian estimation of scale 
parameter in Weibull distribution under linex loss and demonstrates that the 
Bayes estimator performs better than the ML estimator when over-estimation is 
of more importance and when sample size is small. In life testing, situations 
may arise where over-estimation is more critical than under-estimation and 
should receive very high weightage. For example, fixing the guarantee period 
for products, as discussed in section 1, could get much more importance when 
the item is very costly, like an engine for an aeroplane or a picture tube of a 
television set, as even a single replacement would amount to a considerable loss 
for the manufacturer. Also, in these cases we are more likely to work with small 
samples, because of the cost restricting the number of items put to life test. 
Based on the present study, the use of Bayes estimator in these scenarios is 
recommended. 
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Table 1:  RE under linex loss for α =0.5, β =0.8 

n a=1 a=2 a= -1 a= -2 

5 2.414496 4.119995 1.184758 1.014186

10 1.766213 2.468274 1.159609 1.006613

15 1.639807 2.015275 1.130456 1.004604

20 1.520482 1.806507 1.119393 1.003126

50 1.2883 1.436478 1.07956 1.000973

100 1.178693 1.255588 1.052198 1.000326

 

 

 

 

Table 2: RE under linex loss for α =0.5, β =1.0 

n a=1 a=2 a= -1 a= -2 

5 1.639668 2.09538 1.049588 1.001127

10 1.283212 1.604791 1.035481 1.000171

15 1.196475 1.306765 1.023396 1.000398

20 1.166145 1.247874 1.002313 0.999761

50 1.04104 1.090504 1.001522 0.999990

100 1.024122 1.039281 1.000993 1.000036
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Table 3: RE under linex loss for α =0.5, β =1.2 

n a=1 a=2 a= -1 a= -2 

5 1.106725 1.280404 0.926309 0.987624

10 0.899054 0.912025 0.916089 0.994025

15 0.859699 0.836261 0.917235 0.995848

20 0.812855 0.806697 0.921755 0.997075

50 0.832358 0.805112 0.936302 0.999111

100 0.883368 0.857083 0.955831 0.9997 

 

 

 

 

 

Table 4: RE under linex loss for α =1.5, β =0.8 

n a=1 a=2 a= -1 a= -2 

5 1.129454 1.387942 0.970119 0.994430

10 0.992871 1.085951 0.939167 0.996460

15 0.920736 0.923472 0.942921 0.997167

20 0.903386 0.886892 0.943230 0.997957

50 0.874424 0.832997 0.943329 0.999283

100 0.857839 0.853951 0.956492 0.999693
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Table 5: RE under linex loss for α =1.5, β =1.0 

n a=1 a=2 a= -1 a= -2 

5 1.521064 2.173724 1.045962 0.999895

10 1.354525 1.530984 1.029179 0.999793

15 1.222593 1.289258 1.031999 1.000056

20 1.141672 1.257265 1.015046 1.000141

50 1.062012 1.095119 1.003041 0.999934

100 1.015819 1.034365 0.999954 0.999988

 

 

 

 

Table 6: RE under linex loss for α =1.5, β =1.2 

n a=1 a=2 a= -1 a= -2 

5 1.981569 3.29179 1.124522 1.007063

10 1.652204 2.215139 1.106804 1.004386

15 1.434133 1.715492 1.096144 1.003605

20 1.387536 1.616163 1.089482 1.001954

50 1.260439 1.365434 1.073076 1.000823

100 1.179093 1.270592 1.055923 1.000332

 


