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Abstract

Talman [1] used a Group theoretic approach to obtain an interesting
expression between Hermite and Laguerre polynomials. Here we show that
the Talman’s relation permits to deduce easily the generating function of

Saha [2] for Hermite polynomials.

INTRODUCTION

Talman [1] employed Group theory to find an expression between
Laguerre and Hermite polynomials, in fact:
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where our notation is the same than Abramowitz-Stegun [3]. In the next section
we shall show that under simple manipulations the relation (1) implies the
following generating function for Hermite polynomials:
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that Saha [2] obtains by another route without Group theory.

The study of formulae involving Laguerre and Hermite polynomials has
great importance in the analysis of several quantum mechanical problems [4-8].

Saha’s generating function

From definition of the associated Laguerre polynomials [3] it is immediate
the property:
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then we apply to (1) the operation Z and we use (3) to obtain:
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where we have employed the well known generating function [3]:
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If in (4) we make the changes t=i7, a=-¢ and &=—ixe'” +3incose
with 77, ¢, X reals, then it results the relation:

e’ = iw H, (— ixe'” + imos;o) (6)
u=0 ﬂ
which contains (5) when ¢ = % ; the complex conjugate of (6) is given by:
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and, finally, if we introduce the notation y =sing then (7) leads to the
generating function (2) deduced by Saha, g. e. d.
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