
Journal of Scientific Research Vol. 55, 2011 : 177-180 
Banaras Hindu University, Varanasi ISSN : 0447-9483 

 
GAUSSIAN QUADRATURE VIA HERMITE AND 

LAGRANGE INTERPOLATIONS 
 

J.H. Caltenco, J. López-Bonilla & J.M. Rivera-Rebolledo 
Instituto Politécnico Nacional, ESIME-Zacatenco, Anexo Edif. 3, Col.  

Lindavista  CP 07738, México DF, 
Departamento de Física, Escuela Superior de Física y Matemáticas, IPN,  

Edif. 9, Zacatenco, Col. Lindavista CP 07738, México DF 
e-mail: jlopezb@ipn.mx 

 
Abstract 

In order to determine ܣ ൌ ׬ ݂ሺݔሻ݀ݔ௕
௔ , the function ݂ሺݔሻ can be 

tabulated in the points ݔ௝ specified by the roots of Legendre polynomials  
௡ܲሺߦሻ, thus  yj = f (xj ), then the Gaussian Quadrature consists in to 

approximate ܣ with the area under the corresponding Lagrange 
interpolating polynomial. If the points ݔ௝ are twice, then it is also necessary 
to give the values of the first derivative  ݕ௝

 ,, and the respective polynomial is 
constructed via the Hermite interpolation.  Here it is shown in both cases 
explicit relations to implement the Gauss technique, which are useful when 
teaching Numerical Analysis. 
Keywords: Legendre polynomials; Gaussian quadrature; Lagrange and 
Hermite Interpolations.   
 

INTRODUCTION 
The various techniques of quadrature try to determine with the minimal 

error the integral:  

ܣ ൌ ׬ ݂ሺݔሻ݀ݔ௕
௔  ,      (1) 

and in this point, the Gauss method (1814) [1,2] is one of the most efficient 
because it is based in the Legendre polynomials roots  ߦ௞ [1,3], leading us to the 
following data points in [a,b]: 

௝ݔ ൌ ௕ା௔
ଶ

൅ ௕ି௔
ଶ

௝ߦ          ,  ௝ߦ א  ሾെ1,1ሿ ,     j=1,2,…,n,   (2) 

where the ߦ௞ are the zeros of ߏ௡ሺߦሻ. Then it is constructed an interpolating 
polynomial G(x) which approximates to f(x) in [a,b] and allows to give a value 
close to (1): 

ҧܣ         ൌ ׬ ௕ ݔሻ݀ݔሺܩ
௔  

ሺ2ሻ
ൌ   ௕ି௔

ଶ
׬   ሾܩሺݔሻሿ

ݔ     ՜ ߦ
ଵߦ݀

ିଵ          (3) 
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Here the question is how to construct ܩሺݔሻ : In Sects. 2 and 3 it is 
indicated the implementation of the corresponding interpolating polynomial 
when all the ݔ௝ are simple and double points, respectively, looking to preserve 
the efficiency of the Gaussian quadrature.  Furthermore, there are shown the 
resulting expressions for (3) that give an excellent approximation of the area 
(1).  

LAGRANGE INTERPOLATION: SIMPLE POINTS 

According to the Lagrangian technique [1], the following polynomials are 
introduced: 

a) Fundamental: 

ሻݔሺܨ   ൌ ሺݔ െ ݔଵሻሺݔ െ ଶሻݔ … . ሺݔ െ  ௡ሻ    (4)ݔ

b) Auxiliar – Complementary: 

Φ௝ሺݔሻ ൌ ிሺ௫ሻ
௫ି௫ೕ

    ,     Φ௝ሺݔ௞ሻ ൌ 0      , ݆ ് ݇                                               (5) 

c).- Canonical: 

p௝ሺݔሻ ൌ ஍ౠሺ௫ሻ
஍ౠሺ௫ೕሻ

 ൌ ிሺ௫ሻ
൫௫ି௫ೕ൯ி´ሺ௫ೕሻ

  ,     p௝ሺݔ௞ሻ ൌ  ௝௞      ,                                    (6)ߜ

and it is simple to prove that under the gauge transformation (2):  

ሻ|௫՜కݔ௝ሺ݌ ൌ ஍ౠሺకሻ
஍ౠሺకೕሻ

    ,       Φ୨ሺߦሻ ൌ  ∏ ሺߦ െ ௥ሻ௡ߦ
௥ୀଵ
௥ஷ௝

 .                                    (7) 

So the corresponding  interpolating polynomial  ܩሺݔሻ, of n-1 degree, 
adopts the form: 

ሻݔሺܩ ൌ ሻݔଵሺ݌  ଵݕ ൅ ሻݔଶሺ݌  ଶݕ ൅ ڮ ൅  ሻ ,        (8)ݔ௡ሺ݌  ௡ݕ

with the basic property ܩ൫ݔ௝൯ ൌ ௝ݕ ൌ ݂൫ݔ௝൯, then (3) implies the Gaussian 
quadrature formula for simple points: 

ҧܣ ൌ  ௕ି௔
ଶ

  ∑ ௞ ߱௞   ,      ߱௞ݕ ൌ௡
௞ୀଵ

ଵ
஍ౡሺకೖሻ ׬ Φ୩ሺߦሻଵ

ିଵ ݀ξ                              (9) 

noticing that there exist Tables [4] for the weight factors ߱௞. 

As an example of (9), let us consider the calculation of ׬ ݁௫ ݀ݔସ
଴  , that is, 

ܽ ൌ 0, ܾ ൌ 4, 

 ݂ሺݔሻ ൌ ݁௫ , for the case n=5, then [1,3,4]: 



 GAUSSIAN QUARDRATURE VIA HERMITE AND LAGRANGE INTERPOLATIONS 179 

ଵߦ ൌ െߦହ ൌ െ0.9061 798459, ଶߦ ൌ െߦସ ൌ െ0.5384 6931 01, ଷߦ ൌ 0 ,   (10) 
߱ଵ ൌ ߱ହ ൌ 0.2369 2688 51 , ߱ଶ ൌ ߱ସ ൌ 0.4786 2867 05 , ߱ଷ ൌ   0.5688 8888 89 ,  
with the corresponding values: 

X1 = 0.1876  4031 ,    y1 = 1.2063  9950 , 
X2 = 0.9230  6138 ,    y2 = 2.5196  8405 , 
X3 = 2.0000  0000 ,    y3 = 7.3890  5610 ,   (11) 
X4 = 3.0769  3862 ,    y4 = 21.6918  9349 , 
X5 = 3.8123  5969 ,    y5 = 45.2571  0562 , 

and (9) leads to the approximate value 

׬ ݁௫ସ
଴ ൎ ݔ݀ ҧܣ ൌ 2 ∑ ௞߱௞ݕ

ହ
௞ୀଵ ൌ 53.5981 3663   ,                                (12) 

which can be compared with the exact value  53.5981  5003. 
HERMITE INTERPOLATION : DOUBLE POINTS 

In order to get (2), the roots (10) are used with 10 decimals, but may be in 
the laboratory the instruments do not allow to work with so many decimals, 
therefore forcing to the Legendre roots  ߦ௝ to be rounded, so for instance, 
instead of (10) it could be employed the values: 

ଵߦ ൌ െߦହ ൌ െ0.90   , ଶߦ ൌ െߦସ ൌ 0.54   , ଷߦ ൌ 0.00   ,       (13) 
ଵݔ ൌ 0.20   , ଶݔ ൌ 0.92   , ଷݔ ൌ 2.00   , ସݔ ൌ ହݔ    ,   3.08 ൌ 3.80 , 

which together with (9) would give ܣҧ with much more error than (12), and in 
this way the Gaussian quadrature efficiency is lost.  

This situation is solved ingeniously [1] just assuming as double points the 
 ௝ , and consequently the corresponding interpolating polynomial of degreeݔ
ሺ2݊ െ 1ሻ is constructed by means of the Hermite technique  [5]. 

ሻݔሺܩ ൌ ∑ ቂݕ௞  ݌௞
ሺଵሻሺݔሻ ൅ ௞݌  ௞´ݕ

ሺଶሻሺݔሻቃ௡
௞ୀଵ    ,                                      (14) 

where 

௞݌
ሺଵሻሺݔሻ  ൌ    ൣ1 െ ௞݌ 2

´ ሺݔ௞ሻሺݔ െ ௞݌  ௞ሻ ൧ݔ
ଶሺݔሻ   ,   ݌௞

ሺଶሻሺݔሻ ൌ ሺݔ െ ௞݌௞ሻݔ
ଶሺݔሻ,            (15) 

and (9) is modified: 

ҧܣ ൌ ௕ି௔
ଶ

 ∑ ௞ݓ௞ݕ
௡
௞ୀଵ ൅ ቀ௕ି௔

ଶ
ቁ

ଶ
 ∑ ᇱݕ

௞
௡
௞ୀଵ  ෥௞ ,              (16)ݓ

such that 

෥௞ݓ ൌ  ଵ
஍ೖ

మሺకೖሻ ׬ ሺߦ െ ௞ሻΦ௞ߦ
ଶሺߦሻଵ

ିଵ  (17)                                             ,  ߦ݀
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௞ݓ ൌ  
1

Φ௞
ଶሺߦ௞ሻ න Φ௞

ଶሺߦሻ
ଵ

ିଵ

ߦ݀ െ 2
Φ௞

´ ሺߦ௞ሻ
Φ௞ ሺߦ௞ሻ

 ෥௞ݓ 

Therefore, when (13) and (17) are used: 

ଵݕ ൌ ᇱݕ
ଵ ൌ ଵݓ         0275 1.2214 ൌ ෥ଵݓ               0530 0.2364 ൌ െ0.0015 5377 

ଶݕ  ൌ ᇱݕ
ଶ ൌ ଶݓ       9039 2.5092 ൌ ෥ଶݓ      9553 0.4789 ൌ  0.0005 8042 

ଷݕ  ൌ ᇱݕ
ଷ ൌ ଷݓ      5609 7.3890 ൌ ෥ଶݓ       9830 0.5691 ൌ  0            (18) 

ସݕ  ൌ ᇱݕ
ସ ൌ ସݓ          0240 21.7584 ൌ ෥ସݓ                     ଶݓ ൌ  െݓ෥ଶ 

ହݕ  ൌ ᇱݕ
ହ ൌ ହݓ          8449 44.7011 ൌ ෥ହݓ                      ଵݓ ൌ  െݓ෥ଵ 

then the expression (16) for double points gives the value 53.5981 3516, with an 
error of the same order that in (12), so the Gaussian quadrature efficiency being 
restored. 

CONCLUSIONS 

When the Gauss quadrature is applied, two situations can be arised: 

a)  It may be possible to manage the Legendre roots with enough significative 
numbers, so (9) is an excellent approximation for the corresponding area, 
that is, such roots do participate as simple points. 

b)  The zeros ߦ௝ may be rounded in order to reduce its number of decimals, 
then in this case it must be used (16) for double points to get an error of 
the same order of magnitude that (9). 
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