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ABSTRACT 
This paper considers the problem of estimation of shape parameter of 

classical Pareto distribution under apriori information in the form of a point 
guess value when the scale parameter is unknown. It is seen that the 
proposed estimator behaves better than the usual unbiased estimator when 
the prior point guess is close to the true value. This conclusion encourages 
deciding first whether point guess is closed to the true value or not and 
accordingly one should think of using the proposed estimator or the usual 
unbiased estimator. Hence, some testimators are defined through the use of 
preliminary test procedure. The properties of proposed estimators have been 
studied in terms of bias and mean square error. 
Keywords and phrases: Pareto distribution, Shrinkage Estimator, 
Preliminary Test Estimators, Relative Bias, Relative Efficiency 
 

INTRODUCTION 

Classical Pareto distribution was initially introduced as a model for 
distribution of income exceeding a certain limit. But George Zipf (1949) 
commented that many variables associated with economic and social 
phenomena follow a Pareto distribution. It has also been used in connection 
with reliability theory and survival analysis (see Davis and Feldstein, 1979; 
Abdel-Ghaly, Attia and Aly, 1998 etc.). This distribution has played an 
important role in a variety of problems such as economic studies of income 
(Champerowne, 1953; Mandelbrot, 1960 etc.), size of cities and firms (Steindl, 
1965), business mortality (Lomax, 1954), service time in queuing systems 
(Harris, 1967). 

The probability density function of the classical Pareto distribution is  

        ;   a    )1a(a X)a,;X(f +−σ=σ   X ≥ σ,   a > 0   

where σ and a are the scale and shape parameter respectively.  

Muniruzzaman (1957) has discussed maximum likelihood estimation of 
several measures of location for classical Pareto distribution. Quandt (1966) has 
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obtained different estimators for the parameters of this distribution using the 
method of maximum likelihood, method of least square and quantile method 
and discussed their properties. The maximum likelihood estimators for the 
parameters of the distribution obtained by Quandt (1966) are 
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It may be noted here that σ̂  and â  are jointly sufficient and are consistent 
estimates for σ and a respectively (in fact strongly consistent). 

 Malik (1970b) derived the distribution of maximum likelihood estimates 
of scale and shape parameters and showed that they are independently 
distributed. The result is implicit in Muniruzzaman (1957) (see also Baxter 
(1980). Saksena and Johnson (1984) have obtained the unique minimum 
variance unbiased estimator of the scale and shape parameter based on complete 
sufficient statistics (see also Baxter (1980) and Likes (1969)).  

It can be shown that (1)X    ˆ =σ  follows Pareto distribution with parameters 

σ and na whereas 2na/ â  follows a chi-square distribution with (2n−2) degree of 
freedom. It may further be noted that these maximum likelihood estimators are 
biased. However, the biases can be easily estimated and hence, the unbiased 
estimator of σ and a and their corresponding mean square error can easily be 
obtained as 
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 Shrinkage technique proposed by Thompson (1968a) is one of the most 

popular technique for improving the existing estimator T of parameter θ when a 
prior guess θ0 is available to us with confidence k by defining the estimator  

  T)kTTh −+θ= (1   k    0 . 
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It has been noted by various authors that TTh performs better than T if θ is 
close to θ0 and k is taken large. However for larger deviation of θ0 from θ, TTh 
may be worse. The range in which TTh performs better than T can be increased 
by taking k small. Thus, mostly it is often concluded that if it is expected that θ 
is in vicinity of θ0, one should use TTh with large k whereas if θ is close but not 
in vicinity of θ0, one can use the TTh with small k. In order to check whether θ is 
in vicinity of θ0 or not, one can use a preliminary test for testing H0 : θ = θ0 and 
if hypothesis is not rejected, we use TTh otherwise T may be used. It may be 
noted that preliminary test shrinkage estimator provides protection against the 
use of less efficient estimators. 

It is clear from the above discussion that if the choice of confidence k in 
the guess value is in accordance with the real situation, the shrinkage estimator 
performs better than the usual estimator. Thus, instead of taking k to be a fixed 
constant in the shrinkage estimator one should take it as a weight (lying 
between 0 and 1) which takes large value if θ is expected to be close to θ0 and 
small value if θ is away from θ0. In other words k can be taken as a continuous 
function of some suitable statistics so that its value monotonically decreases as 
(θ−θ0) is expected to increase. Attempts have been made by various authors for 
the choice of such continuous weighting function. Mehta and Srinivasan   
(1971) proposition of choice of the weight function as function of preliminary 
test statistics has been considered by various authors (see Pandey and Mishra, 
1991, 92). 

This paper aims to consider the Mehta and Srinivasan’s proposition for the 
estimation of shape parameter of Pareto distribution when scale parameter is 
also unknown. The estimator, thus obtained, will be studied for its performance 
as compared to the usual unbiased estimator. Lastly recommendation for the use 
of estimators will be made. 

ESTIMATION OF THE SHAPE PARAMETER WHEN SCALE 
PARAMETER IS   UNKNOWN 

Let us consider that a random sample of size n is drawn from a Pareto 
distribution. For testing a hypothesis H0 : a = a0, the test procedure proposed by 
Muniruzzaman (1957) is based on the statistic u0 â/a)2w −= 2(n   where uâ is 
the usual unbiased estimate of a. It may noted here that test statistics follows 
chi-square distribution with 2(n−1) degrees of freedom under H0.  Let us 
consider bw)w( −=φ de    where d and b are positive constants such that 0 ≤ d ≤ 1 
and b > 0. For every such choice of d and b, it may be noted that φ(w) is 
continuous function of w and  
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φ(w) → 0   if w → ∞    

φ(w) → d    if w → 0 

In other words as w increases φ(w) decreases. A large of w indicates that 
H0 : a = a0 may be wrong. Therefore, we may propose a modified shrinkage 
estimator as  

  u0 ˆT a (w)) (1  (w)a    φ−+φ=      (2.1) 

A somewhat similar estimator for exponential distribution has been 
considered by Pandey and Mishra (1991,1992). 

Bias and Mean Square Error of Estimator T 

Bias of the proposed estimator is defined as  

a    E(T)    )T(Bias −=  

It is easy to verify that the bias of T is obtained as follows: 

  ])T(Bias 21 −− ψ−δψ= nn    ad[        (2.3) 

and  

  
a

)T(lativeRe (T) Bias        bias =  

          ]21 −− ψ−δψ= nn    d[     (2.4) 

where  
a
a    0=δ  and 1)1 −+δ=ψ (2b    . 

The MSE of T can be expressed as  

  2)T(E))T(MSE a   2a    E(T    2 +−=     (2.5) 

Further, expression of mean square error of the proposed estimator can 
easily be obtained as  

  d      n2 311
2 *)3n)(2n()3n(

a
)T(MSE −−− ψ−−+−=  

       2d   2d  d  nn2n22 3121 )3n)(2n(** −−−− ψ−−−ψδ−ψδ+    
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    122 −−− ψδ−ψ+ψδ+ nnn   2d   2d    2d    (2.6) 

where  1* −+δ=ψ 1)(4b    . 

It may be seen as  1
2

u )3n(
a

)â(MSE −−=    . 

Therefore relative efficiency of T with respect to usual unbiased estimator 
uâ  is defined as  

     
)T(MSE
)â(MSE

)â,T.(E.R u
u =  

       2d   (nd  d  [1  n2n2n2 2123 *)3n(*)3*)2n( −−− δψ−−ψ−δ+ψ−+=  

   23 )3)2n( −− δψ−+ψ−− nn  2d(n  2d   

      112 ])3)3 −−− δψ−−ψ−+ nn  2d(n   2d(n    (2.7) 

PRELIMINARY TEST ESTIMATORS FOR SHAPE PARAMETER 
The use of preliminary test for subsequent estimation of parameter has 

been proposed for the first time by Bancroft (1944) and the estimators thus 
obtained are popularly known as preliminary test estimators. A number of 
authors have used preliminary test estimators in various situations. For detail 
bibliography readers are referred to Bancroft and Han (1977). 

PRELIMINARY TEST SHRUNKEN ESTIMATOR PTS1â  

It may be noted from the previous section that if a is close to point guess 
a0    the proposed estimator behaves better than usual unbiased estimator uâ  but 
it may be worse otherwise. Let us consider the situation that the point guess a0   
is either equal to the true value a or less than that. Hence, we propose to make a 
choice between T and uâ  for their use based on preliminary test. Needless to 

mention that large value of test statistic 
u

0

â
a)2n(2w −=      indicate that H0 : a  = 

a0 may be rejected in favors of H1 : a  > a0 . Therefore, we propose the following 
preliminary test shrunken estimator for its use in such situations: 
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where choice of c depends on the level of significance (α ) of preliminary test. 

Therefore, the expression for the bias and relative bias of 1PTSâ  can be 
given as  

)]2n()1n()â(Bias 21
1PTS −ψ−−δψ= −−

X
n

X
n G d    G a[d      (3.2) 

and 
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X
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where ψ and δ has already been defined in (2.4),   )(G X λ  is incomplete gamma 
function defined as.  
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which can easily be evaluated as  
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Where ψ* is defined in (2.6) and )X 1
1 δ+= 2c(2b    . 

Therefore the expression for the relative efficiency of 1PTSâ  with respect 
to usual unbiased estimator uâ  defined as  
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PRELIMINARY TEST SHRUNKEN ESTIMATOR PTS2â   

In the previous section we proposed a preliminary test shrunken estimator 
if guess value is either equal to or less than the true value. But in practice, 
deviation of the guess value cannot be ruled out in either direction. Therefore in 
such situations, H0 : a = a0 may be rejected at α percent level of significance if 
w ≤ c1 or w ≥ c2, where c1 and c2 are such that  

  
0 1 2[w  c    w  c ]     ,HP α≤ ∪ ≥ =  

c1 and c2 may be values of unbiased partition or partition with equal tail area. 
Hence, we may propose the preliminary test shrunken estimator for the shape 
parameter under this situation as  
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BIAS and MSE of PTS2â  

The bias of 2PTSâ  is defined as 

  2 2ˆ ˆ( )    E( )  aPTS PTSBias a a= −   

Therefore the bias of 2PTSâ  is as follows: 

)}1n()1n()â(Bias 1
2PTS −−−δψ= −
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n G  {Gda[     



188 GANESH SINGH, B.P. SINGH, SANJAY K. SINGH, U.SINGH & R.D. SINGH 

     )}]2n()2n(2 −−−ψ− −
32 XX

n G    {G   (3.8) 

and the expression for the relative bias is  

a
)â(Bias)â(Bias.R 2PTS
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Evaluation of various terms in the above expression is quite simple and 
after simplification it finally reduces to 
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Hence, the relative efficiency of 2PTSâ  with respect to usual unbiased 



 SHRINKAGE ESTIMATOR AND TESTIMATORS FOR SHAPE PARAMETER… 189 

estimation uâ  is  
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DISCUSSION FOR ESTIMATOR T 

Now we will study the performance of the proposed estimator in 
comparison to the usual unbiased estimator. It may be noted here that relative 
bias and relative efficiency of the proposed estimator as compared to usual 
unbiased estimator is function of n, δ, d and b. Out of these parameters n is the 
sample size and d and b are the constants involved in the weight used in 
defining the shrinkage estimator. The values of these are to be fixed by the 
experimenter. Whereas, δ is ratio of guessed and actual values of the parameter 
and thus it is beyond the control of the experimenter. Therefore, to study the 
behavior of the relative bias and relative efficiency, we calculated the values of 
these for various values of n, δ, d and b. The values considered by us are as 
follows: 

 n = 5(5)15 

 δ  =  
a
a0   = .25(.25)3.75 

 d =  0.2, 0.3, 0.4, 0.6, 0.8 

And  b  =  .001, 0.01, 0.20, 0.40, 0.60, 0.80, 1.00. 

The results thus obtained are summarized in the form of graphs. Due to 
paucity of space and similarity in the trend of relative bias and relative 
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efficiency, all the figures are not reproduced here only partial results are shown 
in figures 1-14. 

Figures 1-4 shows the variation in the values of δ when d and b are fixed 
and different curve show the relative biases for different values of n. It may be 
noted from these figures that relative bias is negative for δ < 1. As δ increases, it 
may be noted that bias increases but the magnitude decreases till it becomes 
zero for some value of δ. Such a value of δ is closer to 1 when b is small and 
greater than 1 when b is large. It may also be noted that for small values of b, 
the relative bias seems to increase by linear rate with δ but for large or moderate 
values of b, positive bias increases with a much slower rate. 

Further the effect of d may also be noticed from comparison of figure 1 
with 3 and 2 with 4. It may be easily seen that as d increases, the relative bias 
increases for both small as well as moderate values of b but it may also be noted 
that the magnitude of the relative bias is less for the moderate value of b. It is 
further noted that as the sample size increases, the relative bias decreases but for 
small value of b, the magnitude of relative bias decreases with slower rate as 
compared to that for large values of b and δ. 

Figures 5-7 shows the variation in the relative bias for the variation in the 
values of b when the sample size and the ratio of the guess and true value is 
fixed and different curve show the relative bias for different value of d. It may 
be easily seen from these figures that for large choice of b the magnitude of 
relative bias is negligibly small. The choice of d should be small in such cases. 
It may further be noted that if δ is small except for small values of b the 
magnitude of the relative bias is quite small. However, if δ is 1 or greater than 
one, it was noted that for small choices of d, the magnitude of the relative bias 
is quite small except for a range of values of b around 0.2. 

Figures 8-11 summarizes the results for relative efficiency of the 
proposed estimator. It can be noted that as sample size increases, the relative 
efficiency in general decreases. Though, the trend of variation for change in 
value of δ remains more or less same. As δ increases, the relative efficiency in 
general decreases but for moderate or large choice of b it is often noted to be 
larger than one. However for small choices of b and d and for large values of δ, 
it is observed that the proposed estimator may have relative efficiency less than 
1. In such a case the maximum relative efficiency is seen for δ = 1. It is further 
noted that for moderate values of d and b, the relative efficiency is seen to be 
more than one for almost all the considered values of other parameter. As δ 
becomes large, the relative efficiency comes closer to one. It is worthwhile to 
mention that greater gains are seen for a sub parameter space around δ = 1 with 
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small choices of d and b. However, for moderate choices of d and b, the range 
in which the relative efficiency is greater than one increases but the magnitude 
of relative efficiency decreases. 

Figures 12-14 show the variations in relative efficiency due to variation in 
the values of b. It may be noted from these figures that if δ is small (< 0.50), the 
greater gain in efficiency is obtained by taking d to be moderate values namely 
0.3 ≤ d ≤ 1 and b to be small i.e. around 0.2. However, if δ is large, moderate 
choices of d and b provides relative efficiency greater than one in most of the 
cases though the gain is smaller. 

DISCUSSION FOR PRELIMINARY TEST ESTIMATORS 

To study the performance of the proposed estimators, we have considered 
the arbitrary value of d and b namely d = 0.3 and b = 0.01 for the sample size n 
= 5, 10, 21 and δ = 0.25(0.25)2. The relative biases of the proposed estimators 
and relative efficiencies as compared to the usual unbiased estimator, for the 
above mentioned values of the parameters are calculated and the results are 
summarized in the form of figures. 

Performance of the PTS1â : Figures 15-17 shows the variation in 
relative bias for the variation in the values of δ when n, d and b are fixed and 
different curve show the relative bias for the different level of significance 
namely α = 1%, 5% and 10%. It may be noticed that relative bias is negative for 
δ < 1. As δ increases the relative bias increases but in magnitude it decreases. 
Ultimately for a value of δ close to 1 it becomes zero. For further increase in the 
value of δ, relative bias becomes positive and increases but after a moderate 
value of δ (1.75 ≤ δ ≤ 2.0) a further increase in δ results a decrease in bias. It is 
worthwhile to remark here that the proposed estimator has been defined for the 
situation when δ ≤ 1. Therefore, we see that the proposed estimator has often 
negative relative bias and becomes negligibly small for δ close to one. It may 
also be noted from the comparison of figures that as sample size increases the 
magnitude of relative bias decreases. The effect of change of preliminary level 
of significance has little effect on the relative bias, although a nominal decrease 
in the relative bias can be noted for preliminary level of significance α = 1% as 
compared to other considered values of α. 

Figures 18−20 show the variation in relative efficiency for the variation in 
the values of δ. It may be noted that proposed estimator performs better than the 
usual unbiased estimator for all considered values of δ. It may be easily seen 
that maximum gain is obtained when guess value is in the vicinity of true value. 
Further, it may be noted that for small level of significance the relative 



192 GANESH SINGH, B.P. SINGH, SANJAY K. SINGH, U.SINGH & R.D. SINGH 

efficiency is more than those for large values of it except when δ is not much 
larger than 1 (i.e. often δ < 1.5). The effect of increasing the sample size is also 
easy to see from the comparison of figures and it may be noted that as the 
sample size increases the gain as well as the effective interval (i.e. range of δ for 
which relative efficiency is greater than one) decreases. 

Performance of the PTS2â : Figures 21-23 shows the variation in 
relative bias of 2PTSâ  for the variation in the values of δ and different curves 
show the relative bias for the different level of significance. It may be noted 
from the figures that for small values of δ (< 1), the relative bias is often 
negative, although it is negligibly small for values of δ close to zero. As δ 
increases the relative bias decreases (resulting into an increase in the magnitude 
of bias) initially reaches to a minimum (a maximum in magnitude) for some 
values of δ and then starts increasing (decreasing in magnitude). It becomes 
zero for some values δ close to δ = 1. For further increase in δ, the relative bias 
increases becomes maximum for some value of δ and then decreases for further 
increase in δ. In this way we see that for δ close to 1, the magnitude of relative 
bias is negligibly small and δ move away from 1 magnitude of bias increases. 
However for larger deviations of δ, the relative bias is again negligibly small in 
magnitude. It may also be noted that the magnitude of bias is smaller for larger 
sample size and larger values of preliminary level of significance. 

Figures 24-26 show the variation in relative efficiency for the variation in 
the values of δ. The proposed estimator performs better than usual unbiased 
estimator if δ is close to one. It may be noted that for sub-region of parameter 
space around δ = 1, the relative efficiency is greater than one. Such a region 
may be termed as effective interval for the proposed estimator. It may also be 
noted that for some values of δ around δ = 1, the relative efficiency curve has a 
maximum and as δ moves away from this point in either direction, the relative 
efficiency is noted to continue, even when δ moves out of effective interval. 
After attaining a minimum value a slight increase in relative efficiency is noted 
for further departure of δ on either side. In other words, we see from the figures 
that if 0.65 ≤ δ ≤ 1.60 for all the considered situations the relative efficiency is 
greater than one. The range of δ for which relative efficiency is greater than one 
is larger for small sample sizes and small level of significance as compared to 
large sample sizes and large values of level of significance. However the 
magnitude of gain is more for larger sample sizes and small level of 
significance. 
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CONCLUSION 

From discussion of estimator T we may conclude that the proposed 
estimator performs better than usual unbiased estimator for proper choice of the 
constants d and b. If one is confident that the true value is expected to be close 
to the guess value, one may take d and b small namely 0.3 ≤ d ≤ 0.6 and 0.001 ≤ 
b ≤ 0.01. However, if it is suspected that the true value may be different from 
the guessed value, then a moderate value of b and small values of d provides an 
estimator which is more efficient than usual unbiased estimator in the sense that 
it has smaller mean square error and negligible bias. In brief, we may therefore 
recommend for the use of proposed estimator with small choices of d and 
moderate choice of b. 

On the basis of discussion of preliminary test estimator we notice that one 
sided preliminary test estimator which is justified only when guess value is 
always less than the true value (δ < 1), performs better than the usual unbiased 
estimator for δ < 1. Moreover even if a0 > a, the efficiency of proposed one 
sided preliminary test estimator performs better for δ ≤ 1.65. Thus if we are 
confident that guess value is always less than the true value we may recommend 
the use of this estimator with the choices of d and b as mentioned in previous 
section. However, if the guess can either be less than or greater than the true 
value, two sided preliminary test estimator is logically more justified and can be 
recommended for its use. It may worthwhile to mention that the use of two 
sided preliminary test estimator either provides a better estimate than the usual 
unbiased estimator or nominal losses in a very small parameter space. In rest of 
parameter space it is as efficient as usual unbiased estimator. It is also 
concluded from the above discussion that 1% level of significance may be 
recommended for the use of preliminary test estimator because it provides 
greater gain and lesser losses. Needless to mention that proposed procedure of 
estimates is more beneficial for its use if sample size is small. 

REFERENCE 

Abdel-Ghaly, A.A., Attia, A.F. and Aly, H.M. (1998). Estimation of the parameter of the Pareto 
distribution and reliability function using accelerated life testing with censoring. 
Commun. Statist. Simula. and Comput., 27, 469-484. 

Arnold, B.C. (1983). Pareto Distributions. International Cooperative, Publishing House, 
Fairland, MD, USA. 

Bancroft, T.A. (1944). On Biases in Estimation Due to the Use of Preliminary Tests of 
Significance. Ann. Math. Statist., 15, 190-204. 

Bancroft, T.A. (1964). Analysis and Inference for Incompletely Specified Models Involving the 
Use of Preliminary Test(s) of Significance. Biometrics 20, 427-442 



194 GANESH SINGH, B.P. SINGH, SANJAY K. SINGH, U.SINGH & R.D. SINGH 

Bancroft, T.A. and Han, C.P. (1977). Inference Based on Conditional Specification, A Note and 
a Bibliography. International Statistical Review, 15, 117-127. 

Baxter, M.A. (1980). Minimum Variance Unbiased Estimation of the Parameters of the Pareto 
Distribution. Metrika, 27,133-138. 

Champernowne, D.G. (1953). A model of income distribution. The Economic Journal, 63, 318-
351. 

Davis, H.T. and Feldstein, M.L. (1979). The generalised Pareto law as a model for progressively 
censored survival data. Biometrika, 66, 299-306. 

George Zipf. (1949). Human Behaviour and the Principle of Least Effort (Addison-Wesley 
Press, Cambridge). 

Harris, C.M. (1967). Queues with stochastic service rates, Naval Research Logistics Quarterly, 
14, 219-230. 

Likes, J. (1969). Minimum Variance Unbiased Estimates of Power function and Pareto 
Distribution. Statistiche Hefte, 10,104-110. 

Lomax, K.S. (1954). Business failures : Another example of the analysis of failure data, Journal 
of the American Statistical Association, 49, 847-852. 

Malik, H.J. (1970b). Estimation of the Parameters of the Pareto Distribution. Metrika, 15(3), 
126-132. 

Mehta,, J.S. and Srinivasan R. (1971). Estimation of mean by shrinkage to a point. Jour. Amer. 
Statist. Assoc. 66, 86- 90. 

Muniruzzaman, A.N.M. (1957). On measures of location and dispersion and tests of hypotheses 
on a Pareto population. Bulletin of the Calcutta Statistical Association, 7, 115- 123. 

Mishra, G.C. and Pandey, B.N. (1992). A weighted estimator for the scale parameter of an 
exponential distribution. Microelectronics and Reliability, Vol. 32, No. 6, pp. 755-757. 

Pandey B.N., Singh J. (1977). Estimation of variance of normal population using apriori 
information. Jour. Ind. Statist. Assoc. 15,141-150.  

Pandey, B.N. and Mishra, G.C. (1991). Weighted estimators for a normal population variance, 
Communication in Statistics, Vol. 20, No. 1, pp. 235-247. 

Pandey. B.N. (1979). On Shrinkage estimation of normal population variance. Comm. Statistics 
8,359-365. 

Quandt, R.E. (1966). Old and new Methods of Estimation and the Pareto Distribution, Metrika, 
10, 55-82. 

Saksena,, S.K. and Johnson, A.M. (1984). Best Unbiased Estimators for the Parameters of a 
Two-Parameter Pareto Distribution. Metrika, 31, 77-83. 

Steindl, J. (1965). Random Processes and the Growth of Firms, New York : Hafner. 

Thompson J.R.(1968a). Some shrinkage technique for estimating the mean. Jour. Amer. Statist. 
Assoc. 63,113-123. 

Thompson J.R. (1968b). Accuracy borrowing in the estimation of mean by shrinkage to an 
interval. Jour. Amer. Statist. Assoc. 63, 953-963. 



 SHRINKAGE ESTIMATOR AND TESTIMATORS FOR SHAPE PARAMETER… 195 

 

 

 

 

 

 

 

 

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75

R
el

at
iv

e 
B

ia
s

δ
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Fig 2: Relative Bias of the Estimator T when 
d=0.2 and b=0.2

n=5 n=10 n=15



196 GANESH SINGH, B.P. SINGH, SANJAY K. SINGH, U.SINGH & R.D. SINGH 

 

 

 

 

 

 

 

 

-0.35

-0.15

0.05

0.25

0.45

0.65

0.85

1.05

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75

R
el

at
iv

e 
B

ia
s

δ

Fig 3: Relative Bias of the Estimator T when 
d=0.4 and b=0.001

n=5 n=10 n=15

-0.235

-0.185

-0.135

-0.085

-0.035

0.015

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75

R
el

at
iv

e 
B

ia
s

δ

Fig 4: Relative Bias of the Estimator T when 
d=0.4 and b=0.2

n=5 n=10 n=15



 SHRINKAGE ESTIMATOR AND TESTIMATORS FOR SHAPE PARAMETER… 197 

 

 

 

 

 

 

 

 

 

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e 
B

ia
s

b

Fig 5: Relative Bias of the Estimator T 
for n=5 and d=0.5 

d=0.2 d=0.3 d=0.4

d=0.6 d=0.8

-0.21

-0.16

-0.11

-0.06

-0.01
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e 
B

ia
s

b

Fig 6: Relative Bias of the Estimator T 
for n=5 and d=0.75 

d=0.2 d=0.3 d=0.4



198 GANESH SINGH, B.P. SINGH, SANJAY K. SINGH, U.SINGH & R.D. SINGH 

 

 

 

 

 

   

 

 

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e 
B

ia
s

b

Fig 7: Relative Bias of the Estimator T 
for n=5 and d=1.0 

d=0.2 d=0.3 d=0.4

d=0.6 d=0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

R
el

at
iv

e 
Ef

fic
ie

nc
y

δ

Fig 8: Relative Efficiency of estimator 
T with respect to âu when d=0.2 and 

b=0.001

n=5 n=10 n=15



 SHRINKAGE ESTIMATOR AND TESTIMATORS FOR SHAPE PARAMETER… 199 

 

 

 

 

 

 

 

 

 

0.9

1

1.1

1.2

1.3

1.4

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

R
el

at
iv

e 
Ef

fic
ie

nc
y

δ

Fig 9: Relative Efficiency of estimator 
T with respect to âu when d=0.2 and 

b=0.2

n=5 n=10 n=15

0

0.5

1

1.5

2

2.5

3

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

R
el

at
iv

e 
Ef

fic
ie

nc
y

δ

Fig 10: Relative Efficiency of estimator 
T with respect to âu when d=0.4 and 

b=0.001

n=10 n=10 n=15



200 GANESH SINGH, B.P. SINGH, SANJAY K. SINGH, U.SINGH & R.D. SINGH 

 

 

 

 

 

 

 

 

 

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

R
el

at
iv

e 
Ef

fic
ie

nc
y

δ

Fig 11: Relative Efficiency of estimator 
T with respect to âu when d=0.4 and 

b=0.2

n=5 n=10 n=15

1

1.5

2

2.5

3

3.5

4

0.001 0.101 0.201 0.301 0.401 0.501 0.601 0.701 0.801 0.901 1.001

R
el

at
iv

e 
Ef

fic
ie

nc
y

b

Fig 12: Relative Efficiency of estimator 
T with respect to âu when n=5 and d=.5

d=0.2 d=0.3 d=0.4

d=0.6 d=0.8



 SHRINKAGE ESTIMATOR AND TESTIMATORS FOR SHAPE PARAMETER… 201 

 

 

 

 

 

 

 

 

1

2

3

4

5

6

7

8

0.001 0.101 0.201 0.301 0.401 0.501 0.601 0.701 0.801 0.901 1.001

R
el

at
iv

e 
Ef

fic
ie

nc
y

b

Fig 13: Relative Efficiency of estimator 
T with respect to âu when n=5 and 

d=0.75

d=0.2 d=0.3 d=0.4

d=0.6 d=0.8

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.001 0.101 0.201 0.301 0.401 0.501 0.601 0.701 0.801 0.901 1.001

R
el

at
iv

e 
Ef

fic
ie

nc
y

b

Fig 14: Relative Efficiency of estimator 
T with respect to âu when n=5 and d=1

d=0.2 d=0.3 d=0.4

d=0.6 d=0.8



202 GANESH SINGH, B.P. SINGH, SANJAY K. SINGH, U.SINGH & R.D. SINGH 

 

 

 

 

 

 

 

 

 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

R
el

at
iv

e 
B

ia
s

δ

Fig 15: Relative Bias of Preliminary 
Test Estimator âPTS1 when n=5, d=0.3 

and b=0.01

α=1% α=5% α=10%

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

R
el

at
iv

e 
B

ia
s

δ

Fig 16: Relative Bias of Preliminary 
Test Estimator âPTS1 when n=10, d=0.3 

and b=0.01

α=1% α=5% α=5%



 SHRINKAGE ESTIMATOR AND TESTIMATORS FOR SHAPE PARAMETER… 203 

 

 

 

 

 

 

 

 

 

-0.23

-0.18

-0.13

-0.08

-0.03

0.02

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
R

el
at

iv
e 

B
ia

s

δ

Fig 17: Relative Bias of Preliminary 
Test Estimator âPTS1 when n=21, d=0.3 

and b=0.01

α=1% α=5% α=10%

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.25 0.75 1.25 1.75R
el

at
iv

e 
Ef

fic
ie

nc
y

δ

Fig 18: Relative Efficiency of Preliminary Test 
Estimator aPTS1 for Shape Parameter when n=5, 

d=0.3 and b=0.01 

α=1% α=5% α=10%



204 GANESH SINGH, B.P. SINGH, SANJAY K. SINGH, U.SINGH & R.D. SINGH 

 

 

 

 

 

 

 

0.8

1

1.2

1.4

1.6

1.8

0.25 0.75 1.25 1.75

R
el

at
iv

e 
Ef

fic
ie

nc
y

δ

Fig 19: Relative Efficiency of Preliminary 
Test Estimator aPTS1 for Shape 

Parameter when n=10, 
d=0.3 and b=0.01 

α=1% α=5% α=10%

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

0.25 0.75 1.25 1.75R
el

at
iv

e 
Ef

fic
ie

nc
y

δ
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Preliminary Test Estimator âPTS2 for 
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