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Abstract

A new method for obtaining measures of information is given and used to obtain related
measures of information i.e., measure of inaccuracy, measure of directed divergence and measure
of entropy.
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Introduction

Let P=(p, pryeeeennn p,) and  O=(gq,qsm 4,) be two non degenerate complete
probability distributions such that
pz')qz' > OVZ = 7)2) _________ 7 (1)

and
Dp=1=D0, ©
i=1 i=1

Then the following measures of inaccuracy [4], measures of directed divergence
and measures of entropy [0] respectively are well known in literature respectively:

1PQ)= _Z pilng;

O 3)

D(P-;Q):_Zﬁﬂ /”ﬂ

=i=1 9i 4@

and S (P) = —Z bl p,
i1 ®)

Kapur [3] gave a new approach to generate measures of inaccuracy, measures of
directed divergence and measures of entrop. He has considered the function.
I'(P:Q)==Y_f(p:)e(a) e—— ©)

i=1
where (i), f(pj) is a positive continuous function.

(1) g(q) is a convex function which is so chosen that
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(a) I'(P: 0 ) is minipum subject to (2) when q4; = Pi for each I so that the minimum value of
I'(P:Q)is] (P:P)

() I *( P: Q) isaconcave function of p, p ....ceveevvvencnines pn
The condition (a) will be satisfied if
Sp) P)=A (aconstany) @
A
that &(Pi)=———
v JOp) ®)

S
° &)= J J(p 7) ................................ ©)

" A ’ i
& (p) =L
FE) (10)
Since we want g(p;) to be convex so Af(p)) < 0. The minimum value of I(P:Q)
is

;ﬂpi)-" S(p )pZ ................................ (11

If I*(P :P)is a concave function of pi1, pz, ..ooeonnnn pa and vanishes for
degenerate distribution it can be used as a measure of entropy since it is clearly a permutationally
symmetric function of p1, p2, -.......pn.

Let us consider the following cases (Kapur [2]) :

CaseI: When f(p)=pi s (12)
"

then I(P:Q)==) p,ng,

=1 s (13)

which is Kerridge's [4] measure of inaccuracy and

I(P:P)==) p;inp;
; ................................ (14)
is Shannon's [6] measure of entropy.

CaseIl: Iff(p;)=p, then (15)

(184)



> pilg 1)

I(P:Q)= a—1 (16)
"ot —1
d . :Zz—i
an I(P:P) a1 an

Which is Havrda-Charvat's [1] measure of entropy.

Case IIL: If f(p. )= p,+p> . (18)
Z 2 q; +17
then I(P.-Q)=Z(pl.+pz.)/ﬂ_
i=1 9i ) (19)
- P +1
and I(P:P)=Y(pi+pf )/n(—j
; Pi ) (20)
This also gives a measure of directed divergence
qz Pz'
D'(P:0)= (Pﬁpz)/( —J
IZ; pitlq) @1
2. Main Result:
Let f(p;)=pi+ap? )
A 1 a
! . e ———— A - —
then £(77) pi(1+ap;) [Pz' 1+ “PZ} ................................ 23)
Hence &( p; )= Aln _bi +B
T+ap; ) 24)
AT+ 2ap,;
Also  g"(p;)=— 2( dplﬁ
pill+ap;)” @5)
Thus for g (p) to be convex A <0 anda = —%
Now 4( ;) = A/ﬂ(7 ;i ]+B A0
P ) (26)
so 1(P:0)3 (1, +ap,2){A/ [”"ﬂw}
i=1 9r ) 27)
and I(P: P)ZA(p, + ap; )/n( ppz j+ZBP +ZBap;
i=1 i pa T ——— 28)

(185)



I(P:P) will be a measure of entropy if it vanishes for any degenerate distribution

re. A(1+a)l(1+a)+B(1+a)=0
ie. B==Ab(1+a)

Thus I(P.-P):A{ > (5, +ap? )i ( pPZJ /ﬂ(7+a)i|

is a valid measure of entropy when A > 0 and 4 =L

N

Particular Cases:

(i) Whena=0and A =1, then

I(P.-P):Zpl» Inp,

=1 e

which is Shannon's [6] measure of entropy,

............... (32)

I(P:P) a measure of entropy suffers from an infirmity that it does not vanish for any degenerate

probability distribution = (0, 0, ..., 1, ..., 0)
(i) WhenA=1,7(P:P)
. 1+ ap;
= Z(pl +ap} /n[—%]—/n(ﬂg)
=l i
is a valid measure of entropy,

Measure of inaccuracy will be

I(P:0)= sz(7+apl {/n( 7] /(7+4)}
g;

=1

and measure of directed divergence will be

D,(P:0)=I(P:0Q)—I(P:P)
—szﬂwpzﬂﬂ{ 4. % }

=1 I+a4 Pl pz
When =0, D,(P:Q)=D(P: Q) given by Kullback and Leibler [5]
When a=1,D,(P:Q)=D(P:Q)given by (21)

1 4 A+ p; A+gq;
en a=—,I(P: = . 2Ny 2
When @ =—1(P: Q) pr( g }”{pxmw}
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Which is Ferrari's measure of entropy and corresponding measure of inaccuracy is

2 A+ p; A+g,
I(P"CQ):ZPZ'( ;sz/ﬂ{ +gq, }
=1

4:(A+1)

and directed divergence is

oo (A, ) At p
D(P:Q)= p( )/n{ i
; 2 A+ p; g

References

1. JH. Havrda and E Charvat (1967): “Quantification methods of classification processes,
concept of structural entropy”, Kybernetika 3, 30-35.

2. JN. Kapur (1994) : “Measures of information and their application”, Wiley Eastern and
Wiley.

3. JN. Kapur (2000): “Geometry of probability spaces”, MSTS, New Delhi.
4. D.E.F Kerridge (1961): “Inaccuracy and inference”, J. Roy, Soc. 23A, 184-194.

5. S. Kullback and R.A. Leibler (1951): “On information and Sufficiency”, An. Math. State, 22,
77-89.

6. C.E.Shannon (1948): “The Mathematical Theory of Communication: Bell. Syst. Tech. Journ.
27, 423-467.

(187)



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

