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Abstract

Infectious diseases of childhood that spread mostly by droplet infection are Chickenpox,
Measles, Diphtheria and Whooping cough. In order to study the spread of these respiratory
diseases, a delay mathematical model has been proposed and analyzed using stability theory. In the
proposed model the underlying population has been divided into two subpopulations consisting
of infants and juveniles. For the control of the disease it has been assumed in the model that only
infants are vaccinated at a constant rate. Since in the target population, age distribution is consid-
ered, a delay in maturation rate has been incorporated in the model. The model has been analyzed
by conducting the linear and non-linear stability analysis of the disease free and endemic equilib-
rium points. On the basis of the asymptotic long term analysis, criteria for the spread and control
of the disease have been derived.
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Introduction

Infectious diseases of childhood that spread mostly by droplet infection are Chickenpox,
Measles, Diphtheria and Whooping cough. Droplet infection is direct projection of a spray of
droplets of saliva and naso-pharyngel secretions during coughing, sneezing or speaking and spitting
in to surrounding atmosphere. The expelled droplets may impinge directly upon the conjunctiva,
oro-respiratory mucosa or skin of a close contact.

In the above-mentioned infectious diseases these droplets which contain millions of bacteria
and viruses can be the soutrce of infection to others. When a healthy susceptible person comes
within the range of these infected droplets, he is likely to inhale some of them and acquire
infection.

All these above-mentioned diseases occur primarily among children under the age of 10
years and one attack generally confers life-long immunity. In all the four diseases referred above
immunity after vaccination is long-lasting. In order to study the dynamics of these kinds of
disease, age dependent epidemic mathematical models have to be constructed. Some age-dependent
epidemic models have been studied mainly by Hethcote [4], Anderson and May [1] and Bussenberg
and Castillo-Chavez |2]. Tchuenche et al [7] have studied global behaviour of an SIR epidemiological
model with time delay. Jin Z and Ma Z [5] have studied the stability of an SIR epidemic model
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with time delay. Shujing et al [3] have studied impulsive vaccination of an SEIRS model with time
delay. In these models age specific vaccination and maturation delay have not been considered.
Only recently Misra et. al [6] have studied effects of age based vaccination on the dynamics of
delay epidemic model.

In view of the above a delay mathematical model has been considered in this paper to
study the transmission of infectious diseases by droplet infection and their control by age specific
immunization.

In the formulation of the proposed mathematical model the undetlying population has
been divided in to two age groups consisting of infants and juveniles because only the populations
of these two age groups ate being affected by the disease under consideration. For controlling of
the disease it has been assumed that only infants are vaccinated at a constant rate as this is being
observed in some of the vaccination policies. Since in the target population age distribution is
considered, a delay in maturation rate has been also incorporated to make the model more
realistic. With these assumptions the mathematical model has been constructed which is being
given by the following system of non-linear ordinary differential equations.

Mathematical model 1

ds,

?:A—ﬁlSlP—(dnL,u)S,—mSl(t—T) (M)
di,

E=ﬁlSlP—(d+}/1)Il—mIl(t—T) )
dR

d—t‘:;/,I,+,uSl—de—le(t—T) 3)
d;tz =—f,S,P+mS,(t-T)—dS, @
dl,

E:,BZSZP—(d+72)12+mll(t—T) (5)
% =y,1,—dR, + mR,(t-T) (©6)
dP

E=W(11+12)—6P ©
with the initial conditions

S,(0)=S,,>0 LL0)=I,>0 R,(0)=0
S,(0)=S,,>0 ,0)=1,,>0 R,(0)=0 8)
P(0) =P, >0

where,

S1 = Susceptible class consisting of infants
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S2 = Susceptible class consisting of juveniles

I = Infective class consisting of infants

I> = Infective class consisting of juveniles

Ri = Removed class consisting of infants

Rz = Removed class consisting of juveniles

P = Infective pathogen or infectious agents

[ = Recruitment rate.

d = Natural death rate of humans.

[; = Transmission rates of infection fori = 1,2
[J; = Removal rates fori= 1,2

[ = Death rate of pathogen.

[1 = Vaccination rate

w = The rate at which infective individual produces pathogen.

m = Maturation rate

T = Maturation delay
Equilibrium points:

The two equilibrium points of the model are:

(i) Disease free equilibrium point

Eo(S,.1,,R,.S,.1,,R,,P), whete

S, =ANd+u+m) I, =0, R, =uA/(d+m)d+m+ u)
S,=mA/d(d+u+m),I,=0, R, =muh/d(d+m)d+m+pu) & P =0
(ii) Endemic equilibrium point

Ei(S;,1,,R,,S,,1,,R ,P"), where

S, =ANd+m+u+pP), I, =BS P I(y,+d+m),

R =S, + 1)) Nd+m), S, =mS [(B,P" +d),

I, =(B,S,P +ml )y, +d), R, =(mR, +y,1,)/d &
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P’ :#qidqz —4pr}/2p,provided q° >4pr

where |

p= 5(72 +d)(y, +d +m)ﬂ1ﬁ2’

q=0(y, +d)(y, +d +m){(d +m+pu)B, +dp}—wA(y, +d +m)B B,
r=0(y, +d)(y, +d +m)(d +m+ p)yd —wA{(y, +d +m)B,d +(y, +d +m)} ,m

Before analyzing the main model we will present a brief discussion of the following
mathematical models (a) and (b) which are special cases of the main model. In the model (a)

vaccination and delay has not been considered and in model (b) vaccination has been considered ata
constant rates but delay has not been taken into account.

Sub Model (a):

@=A—ﬂlSlP—(d+m)Sl
dt
%:ﬁlslP—(dﬂfl +m)l,
dR
d—tlz}/]l1 —(d+m)R,
ds,
dt_ =-f,S,P+mS, —dS,
%=ﬂ252P—(d+7/2)12+mI1
dR,

=v1, —dR, + mR
r Va1, 2 1
dP

EZW(II'FIZ)_&P

With respect to the above model (a) we put the following results:

(i) The disease free equilibrium point is linearly stable if following conditions are satisfied.
2d+m—B,S, >0
2d+y, +m—BS, —w>0
2d -y, +m>0
2d - 3,5, -m>0 )
2d+y, - 3,8, —m—-w>0
2d-y,-m>0
S—w-BS,-5S,>0
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(ii) The endemic equilibrium point is linearly stable if following conditions are satisfied.
2d+m+ B P —BS, >0
2d+y,+m—-BP —BS —w>0

2d -y, +m>0

2d-B,P -B,S,-m>0 (10)
2d+y, - B,P - B,S, —m—w>0

2d-y,—-m>0

S-w=PBS, - 5,8, >0

(iii) The disease free equilibrium point is non- linearly stable in the region given by
D={S,,I,,R,,S,,I,,R,,P):0<S,+I, +R, <,,0<S,+I, +R, <0, &P >0
where, o, = A/(d+m) & o, =mA/d(d+m)}
if following conditions are satisfied

2d +m—BANd+m)>0
2d+y,+m—BANd+m)—w>0

2d-y,+m>0

2d - B,mA/d(d+m)—m>0 (11)
2d+y, - B,mAld(d+m)—m—w>0

2d-y,-m>0

S—w—(Bmld+P)N(d+m)>0

(iv) The endemic equilibrium point is non-lineatly stable in the region D if following

conditions are satisfied.

2d+m+ B P —BANd+m)>0
2d+y, +m—B P - BAId+m)—w>0

2d -y, +m>0
2d+ B,P - B,mA/d(d+m)—m>0 (12)
2d+y, —B,P - f,mAld(d+m)—m—-w>0

2d-y,—-m>0

O—w—(fmld+ p)AId+m)>0

Sub Model (b):

%:A—,BISIP—(al+m+,u)S1
1
%zﬁISIP—(aH;/1 +m)l,
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dR
d—t‘= rl, +uS, —(d+mR,

ds
22— _B,S,P+mS, —dS,
dt e ’

1
% =£,S,P—(d+y)l, +ml,
dR,
dt

dpP
JZW(I] +12)_éP

=y,1, —dR, + mR,

With respect to the above model (b) we put the following results:

(i) The disease free equilibrium point is linearly stable if following conditions are satisfied.
2d+m—B,S >0
2d+y, +m—BS, -w>0
2d-v,-u+m>0
2d—B,S,-m>0
2d+y, — f,S, —m—-w>0
2d-y,-m>0
S-w-pBS ~BS,>0
(if) The endemic equilibrium point is lineatly stable if following conditions are satisfied.

2d+m+ B P —BS, >0
2d+y,+m—BP -BS, —w>0
2d-vy,-u+m>0
2d-pB,P" - B,S, -m>0
2d+y,-B,P —B,S,-m-w>0
2d -y, —m>0

S—w—BS —B,5 >0

(iii) The disease free equilibrium point is non- linearly stable in the region given by
D={S,,I,,R,,S,,I,,R,,P):0<S,+],+R, £0,,0<S,+,+R, <, &P>0
where, 0, = A/(d+m) & o, =mA/d(d+m)}

if following conditions are satisfied.

2d+m— B AId+m)>0
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2d+y,+m—-BANd+m)—w>0
2d-y,-p+m>0

2d - B,mAld(d+m)—m>0 (15)
2d+y, - B,mAld(d+m)—m—-w>0
2d -y, -m>0

O—w—(f,mld+ f)NI(d+m)>0

(iv) The endemic equilibrium point is non-lineatly stable in the region D if the following

conditions are satisfied.
2d+m+ B P — BANd+m)>0

2d+y,+m—BP —BANd+m)—w>0
2d-7y,—-pu+m>0

2d+ B,P - B,mAld(d+m)—m>0 (16)
2d+y, —B,P - B,mAld(d+m)—m—w>0
2d—y,-m>0

O—w—(fB,mld+ B)INI(d+m)>0

Now we analyse the main model given by (1) to (7)
2. Linear Stability Analysis:

2.1 Linear Stability Analysis of the Disease Free Equilibrium Point E,
Consider the following transformation about the equilibrium E,
$i (=8, +m@). L,®)=ny(1). R(t)=R, +n;0).
S,)=58,+n,(), 1,®)=ns(t), R,(t)=R,+ns(1),&

P(1) = n, (1)
Using the above transformation in equations (1) to (7) we get
% = —(d + 1, (1) = mn, (t = T) — B{S, +n, ()}, (©) a7
dditz = (3, + d)n, (1) —mny (t = T) + B{S, +n,(t)}n, (¢) 19
ddL;=ﬂn1(t)+;/lnz(z)—dn3(t)—mn3(t—T) (19)
% = mn, (t —=T) —dn, (1) = B, 1S, +n,(t)n, (£) (20)
ddi; = mny (t=T) = (7, +d)ns (0) + By S, +n, (D, (1) &
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‘;i: = mny(t = T) + ¥yns(t) — dn, (1)

dn

d—t7 =w{n, (1) +n,(t)} - 6n, ()

Which after linearization becomes as:

dn, =

— =—(d + wn,(t)—mn,(t =T)— B,Sn,(t)

% = ~(7, +d)ny (1) = mn, (1 =T) + B,S,n, (1)
(iii; = pny (1) + i, (1) = dny (1) —mny (= T)

ddi: =mn,(t—T)—dn,(t) - 3,S,n, (1)

dns T

7 =mn,(t—T)—(y, +d)n,(t) + ,5,n, (1)
dﬂ =mn,(t =T)+ y,ns(t) —dn,(t)

dt ‘

dt

Now for the linear stability analysis of Eq we proceed as follows:

t-T

. 2
Let, V, = {nl - J‘mn1 (s)ds} +(d+pu+m+pS,)

Differentiating (31) with respect to t and using the inequality (> +b%)>+2ab, we get

dv,

Let, V, = {nz (t)—= [mn, (s)ds} +(d+ 7, +m+B,S,) | [mn]@duds

t=T

Differentiating (33) with respect to t and using the inequality (a” +b?) > +2ab | we get

dv,

t=T

Let, V, = {n3(t) - j mn, (s)ds} +(d+7y, +m+ )

Differentiating (35) with respect to t and using the inequality (a> +b*) > +2ab | we get

(196)

] tJ‘mnl2 (u)duds
=T s

d—tl <{2(mT —1)(d + i +m)+(mT + 1) B,S,}n} (t) + (mT +1) 3,512 (t)

’ <(2(mT =1)(d + ¥, + m) + (mT + 1) 3,5, }n (t) + (mT + 1) B,S,n2 (1)

] tJ.mn32 (u)duds

(22)

(23)

24)

(25)

(20)

@7

(28)

29)

30)

(31)

32)

33)

(34

35



Let, V, = nf (1) + Imnf (s)ds
t=T

Differentiating (37) with respect to t and using the inequality (a” +b*) > *2ab , we have

d‘;“ <mnl(t)+(m—2d + B,S,)n; (t)+ B,S,n>(t)

t
Let, Vs =n3 () + [mn; (s)ds

t=T

Differentiating (39) with respect to t and using the inequality (a® +b?*) > £ 2ab | we have

d;f <mn](t)+(m—2y, —2d + f3,8,)n (t)+ 5,513 (1)

t
Let, Vi = né 1)+ J.mn32 (s)ds

t-T

Differentiating (41) with respect to t and using the inequality (a” +b*) >+ 2ab , we have

‘f <mni(t)+(m+y, —2d)n; (t)+ y,nl(t)

Let, V, = n72 (1)

Differentiating (43) with respect to t and using the inequality (a® +b*) > +2ab , we have

d;? <winl () +ni ()} +2(w—38)n] (1)

Now, we define a Lyapunov functional
V=V+V,+V,+V, +V. +V, +V,
Then, using the above results we get

av

+{2A-mT)(y, +d +m)—(1+mT)(ﬁ1§l + 71)—m—w}n22 (1)

+{2(1=mT)(d +m) — (A +mT) (1 + ,) — min> (t)

+{2d = B,S, —min; (1) +(2d + 7, — B,S, —m—w}ni (¢)
+{2d -y, —mnl () + 2{(5 —w)— (mT + 1) B.S, - 3,5, }n (1)]

(197)

ddV; <{2(mT =1)(d +m) + (mT + 1)(u + y,)}n; (1) + (T +D{un} (1) + y,n; (1)}

o <-[{20—-mT)(d + u+m)— A +mT)B,S, + u) —m}n; (t)

(30)

G7)

38)

(39

(40)

(41)

(42)

“3)
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Thus, the disease free equilibrium point Ey is linearly stable if following conditions are satisfied:

20 —mT)(d + gt +m) — (1 +mT)B,S, + 1) —m >0
2(0-mT)(y, +d +m)—(A+mT)BS, +¥)—m—w>0
2(1=mTY)d +m)—(1+mT)(u+7y)—m>0

2d - f,S,-m>0

2d + 1, = oS, —m—w>0

2d-y,-m>0

5—W—(7’HT+])131§1 _ﬂ2§2 >0

4.2 Linear Stability Analysis of the Endemic Equilibrium Point E,

Consider the following transformation about the equilibrium E4

S,()=8, +x,@t), I,&)=1I, +x,(t), R, (t)=R, +x,(t)
S,()=8,+x,@), L,)=1,+x,(t), R,(t)=R, +x,(t)
P(t)=P" +x,(t)

Using the above transformation in equations (1) to (7) we get

% =—(BP" +d+)x,(t) —mx,(t=T) = B,{S] +x,(t)}x, (t)
%2 = ﬂlP*x1 -y, +d)x,(t) —mx,(t =T) +,81{Sf +x, () }x, (1)

d.
i;=ﬂx1<r>+%xz(ﬂ—dxz(f)—mxa(f‘“

d
d * *
i; = mx,(t—=T)— (B, P" +d)x,(t)— B, {S: +x,()}x, (£)

% =mx,(t=T)+ B,P x,(t) = (¥, +d)x5(t) + B,{S, +x, () }x, ()
% =mx,(t —=T)+ y,x5(t) —dx,(t)
dx,

—L = w{x, (1) + x, (1)} = Ox, (1)
dt )

Which after linearization becomes as:

%z—(ﬂlP* +d + )x, (1) — mx, (t = T) = B,S. x, (1)
TE= BP0~ (1 ) (0= (= T)+ 53,0

% = px, (1) + 7,x, (£) —dx; (t) —mx; (¢ = T)

(198)
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% =mx,(t=T)—(B,P +d)x,(t)— 3,5, x,(t)

% =mx,(t =T)+ B,P x,(t) = (¥, + d) x5 (t) + 3,5, x, (1)

% = mx,(t = T) + y,x5 () — dx, (1)

dx

d_l‘7 = wx, () + x5 (1)} = 6x, (1)

Now for the linear stability analysis of Ei we proceed as follows:
Let,

U, = {x, (- J'mx1 (s)ds} +(d+u+m+pBP +BS) I jmxlz(u)duds

=T t=T s

U, =|x,(t)— J‘mxz(s)ds} +(d+y+m+BP +BS)) [ [mx}w)duds

t-T t-T s

U, =|x,()- Im&(s)ds} +d+u+m+y,) J.Imxf(u)duds

=T t=T s

U, = xf )+ J-mxl2 (s)ds
-T

U, = x52 )+ Imxj (s)ds

T
t
Ui = xG2 () + Imx§ (s)ds
T
2
U, =x;(t)
Differentiating (63) to (69) with respect to t and using the inequality (a* +b?*) >+ 2ab | we get,

% <(2mT =D +u+m+ B,P7)+(mT + DS,V (0 + BS] (mT +1)x3 (1)

d;]tz S(mT +D)BP x () +{2mT =1)(d + y, +m) + (mT + 1)(B,P" + B,S,)}x; (t)

+ 8,8, (mT +1)x; ()

dallftz < (mT + Dux} (t)+(mT +D)y,x; () + {(mT + 1)@+ 7,) + 2(mT = 1)(d + m) }x; (t)

(199)

(59)

(60)

©1)

(62)

(©3)
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(65)

(66)

(67)

(68)

(69)

(70)
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dg; <mxl (t)+{m—2(B,P" +d)+ B,S, }x;(t)+ 5,5, (1)

dZS S mxzz(f)+ﬂzp*xzf(t)+{m—2}/2 —2(1'i'ﬂ2Pjk +ﬂ2S;}x52(t)+,BZS;}C72(t)

Utﬁ <mxl(t)+ y,x2(t)+(m+y, —2d)x. (1)

d;]; Sw{xS (1) +x2 (1)} +2(w—)x; (1)
Now, we define a Lyapunov functional
U=U,+U,+U,+U,+U,+U, +U,
Then, using the above results we get

‘ii—lt] <{20-mTYd +m+u+ P )= A+mT)B,S, +BP +u)—m}x(t)

+{20=mT)(y, +d +m)—(1+mT)BP" + B,S, +7,)—m—w}x (1)
+{2(1=mT)(d +m) - (1 +mT)(p+ ,) — m}x3 (1)

+{2d + B,P" = B,S, —m}x; (1) +{2d + ¥, — B,P" = B,S, —m—w}xi(t)

+{2d — ¥, ~m)x2 (1) +2{S —w—(mT +DB,S; = B,53)(1)]

Thus, the endemic equilibrium point E is linearly stable if following conditions are satisfied:

20-mTYd+m+u+ B P )—1+mT)BS, +BP +u)—m>0
20-mT)(y, +d +m)—A+mT)B,P + .S, +y)—m—w>0
20-mTY)d+m)—A+mT)(u+y,)—m>0

2d+ fB,P" - B,S, —-m>0

2d+y, - B,P = B,S; —m—w>0

2d-y,-m>0

S—w—(mT+1)B.S —f,5; >0

3. Non-Linear Stability Analysis
3.1 Non-Linear Stability Analysis of the disease free equilibrium point E

First we construct a region D as follows:

D={GS,.I,.R,.S,.1,.R,.P):0<S, +I, +R, <0,;,0<S, +1, +R, <0, &P >0 where,

o, =A/(d+m)&a, =mA/d(d+m)}

Let W), is a positive definite function given by

W, = {nl (r)— J.mnl (s)ds} + {n2 (t)— J.mnz (s)ds} + {n3 (1)— Imn3 (s)ds}

t=T t-T t=T

+n (1) +n2 () +n; () +n(t)

(200)
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Differentiating (79) with respect to t and using the inequality (a® +b*) > +2ab in the region D

we get

_dZ” <{(mT =2)(d + p+m)+ B, + (mT + 1) }pn; (1)

+{(mT =2)(d + 7, + m) + B, + (mT + 1)y, + win; (t)
{(mT = 2)(d + m) + u+y,}ni(t) +{=2d + m+ B,c, }n; ()
+{=2d -y, + Bya, + mnZ () +{-2d + y, + m}n; ()
+2{(w=38)+(mT + DB, + B, }n; (1)

+(d+p+m+fo) [mnl (s)ds+(d+y, +m+ By [mn] (s)ds

t=T t=T

+(d+u+y +m) J.mnf(s)ds+mn12(t—T)+mn22(t—T)+mn32(t—T) (80)

=T

Let, W, =(d + u+m+ f,) I Imnlz (w)duds+(d +y, +m+ ;) J Imnzz(u)duds
=T s

=T s t s

+(d+u+y +m) I Imn32 (u)duds + Imnlz (s)ds + Imnzz (s)ds + J‘mn32 (s)ds (81)

t-T s =T =T =T

Differentiating (81) with respect to t we have,

—dgllz = (d+p+m+Ba)mTnl (t)=(d+pu+m+Ba,) [mn(s)ds
t

=T

+(d+7,+m+ Ba)mTn} (t)=(d +y, +m+fa,) [mn}(s)ds

=T

+(d+p+m+y)mTnl () =(d +p+m+7y,) [mn] (s)ds

=T
+mn; (t) —mn (t =T)+mn; (t) —mn; (t =T) + mn3 (t) —mn3 (t = T) 82

Now, we define a Lyapunov functional

W, =W, +W, (83)

Then from (80) and (83) we get,

dw,

S HRA=mT)d + ot m) = U+ mT) (o + ) —m}n; (1)

+{20-mT)d + y, + m)—(1+mT) B, +y,) —m—w}n; ()

(201)



+{2(1=mT)(d + m)— (1 +mT)(y, + @) — m}n; (t)
+{2d —m— B0, }n; () + {2d + y, — B, —m—win ()
+{2d -y, —mn; (t) + 2{(5 —w) — (mT + 1) B, — B, ex, }n2 (1)] (84)

Thus, disease free equilibrium point Eo is non-linearly stable in the region D if following

conditions ate satisfied:

20-mTYd + u+m)—A+mT){BAId+m)+u}—m>0
20-mTYd+y, +m)—A+mT{BAId+m)+y}—m—w>0
20-mT)d+m)—(1+mT)y, +¢)—m>0

2d —m— BymAld(d +m)>0 (85)
2d+y,—fBmAld(d+m)—m—w>0
2d—y,—m>0

O—w—{(mT+1)B + B,m/d}N/(d+m)>0

3.2 Non-Linear Stability Analysis of equilibrium point E;

Let W,, is a positive definite function given by

W,, {x](t)— jmx,(s)ds} +|:x2(t)— J.mxz(s)ds} +|:x3(t)— J.mx3(s)ds}

t-T t-T t-T
+ x5 (1) + x2 () + x. (£) + x (1) (86)

Differentiating (86) with respect to t and using the inequality (a” +b”) > 2ab then in the
region D we get,

dizvrz‘ <{nT =B P +d+p+m)+mT +1D)(BP + )+ Bio i (1)

+{(mT =2)(d + y, + m)+ y,(mT + 1)+ B, P" + S, + w}xi (1)

+{(mT =2)(d +m)+ ¥, + u}xi () +{=2d + m+ B,a, — B, P }x; (1)

+{=2d +m+ S, + B, P —y, + wixZ(t) +{=2d + m+y,}x. (1)
+2{(w=8)+(mT + D) o, + B, }x; (1)

+(BP +d+u+m+ B o) jmxlz(s)ds +(BP +d+y, +m+pa,) _[mxzz(s)ds

t-T t-T

+(+d+y,+m) [mx}(s)ds +mx} (6 =T) +mx} (¢ =T) +mx; (t=T) ®7)

t=T

(202)



ot T
Let, Wy, = (B P +d +u+m+ fc,) I jmxlz (u)duds + jmxf (s)ds

t-T s =T

tot T
+(BP +d+y,+m+ pa,) I J.mxz2 (u)duds + J.mxz2 (s)ds

t=T s t-T
t ot T
2 2
+(u+d+y +m) I me3 (u)duds + jmx3 (s)ds (88)
t-T s t-T

Differentiating (88) with respect to t ,we have

T
—d‘;ﬂ =(BP +d+u+m+ e, ){mef(t)— J.mxf(s)ds}
t =T

+(BP +d+y, +m+ fe, ){mez2 (t)— Imxzz (s)ds}

t-T

+(y,+d+pu+ m){mes2 (t)— ]‘m)cg2 (s)ds}
T
+x; )+ O+ O)—x (¢t -T)—x;(t—=T)—x:(t—T) (89)
Now, we define a Lyapunov functional
W, =W, +W,, 90)
Then from (88) and (90) we get,

‘mf <SH2A-mTY PP +d+u+m)—A+mT)B P + o, + 1) —m}x} (1)

+{20—=mT)(y, +d +m)—(1+mT)BP" + o, +¥,) —m—wix; (t)

+{2(0=mT)(d +m) — 1+ mT)(y, + 1) —m}x; (1)

+{2d + B,P" — B0, —mlx; () + {2d + y, — B, P" — Brot, —m—whxZ (1)

+{2d —m—y,}x () + 2{6 —w— B0, —(1+ mT) B, } 3 (1) 91)
Thus endemic equilibrium point E; is non-linearly stable in the region D if following conditions

are satisfied.

20—mT)B,P +d+pu+m)—(1+mT) B P + L AId+m)+u)—m>0

20—mT)(y, +d +m)—A+mT)B,P" + BANd+m)+y)—m—w>0

2(1—mT)(d +m)—A+mT)(y, + 1) —m>0

2d + B,P" - BymA/d(d+m)—m>0 92)
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2d +y, - B,P" — BymA/d(d +m)—m—w>0
2d-m—-y,>0
S—w—{B,mld+1+mT)BIAN/d+m)>0

Discussion

Here we have analyzed an ordinary differential equation model with time delay for trans-
mission of infectious diseases by droplet infection. By conducting the linear and non-linear stabil-
ity analysis of the disease free and endemic equilibrium points, it has been shown that disease free
and endemic equilibrium points are stable under the conditions involving disease related param-
eters and time delay. It can be observed from the conditions of stability that if T becomes zero
then the stability conditions given for model-1 coincide with the conditions given for model 1(b)
which is a special case of model-1. From the values of equilibrium points it may be observed
that if the rate of vaccination increases then equilibrium level of disease will decrease. From the
stability conditions of model-1 it may be observed that the delay in maturation may lead to the
instability of the otherwise stable equilibrium points for large time-delay.
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