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Abstract

We show, for the two-dimensional hydrogen atom, the relationship between its wave
functions in polar and parabolic coordinates.
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Introduction.

The Schrodinger equation for bounded states of the hydrogen atom in two dimensions:

-V v-—y=Eky (1)

has the following normalized wave functions in polar coordinates (r , (p) [1,2]:
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Laguerre polynomials [3-5].

In parabolic coordinates (#2) defined by:

x:;(uz—vz) . y=uv o, ©)

The normalized solutions of (1) are given by [1,2]:
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where ¢ =0,%1,...,%/ and the H, are the Hermite polynomials [3-5].
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The problem is to express (2) in terms of (4), which it is resolved in [6] employing
non-trivial relations from group theory, with the following answer:
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In the next Sec. we shall show —for special values of 7- expressions between ¥ and ¥

(alternative ones to (5)) which can be obtained without using group theory. In fact, it is sufficient to use
known relations for the Laguerre and Hermite polynomials; our procedure accepts easy generalization
to arbitrary values of parameter 2.

Relationship between polar and parabolic wave functions..

When we search for writing ¥/, in terms of I/ 1 it results that the identity [5]:
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is basic in our process, which we illustrate in two cases:

a).-m=0 .

From (2) we have the following solutions for atbitrary /:

12 Po’
Po 2 2p,r
= e L N 8
Vio er(Zl+l)} ’( h j ®

1 / /
there we put r=5(u2+V2),thenweemploy(7)with a=1,¢&= %u, n= %V and we

remember (4) to deduce the following expression (I'(z) denotes the gamma function) :
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much more simple in computations than the corresponding relation obtained from (5) for m =0 ; in
[+ [+ It
(9) it is clear that F[Tq + lj = (qu' when [qu is an integer.

For example, (9) implies that ¥ =¥ , and:
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in accordance with (5).

b).-m=1.

The equation (2) gives us the wave functions :
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resulting thus that:
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On the other hand, by repeated partial differentiation of (7) with respect to § and/or 7] for a =17+

7, and the use of the known properties [5]:
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It is easy to show the interesting identity:
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which jointly with (4) and (12) lead to the expansion:
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which is more economical — in calculations - than (5) for #=1. Then (15) implies:
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Similarly, with (7) for « = A2 we can obtain an expression for (§+in)+ L?_z (€241M?) and then to
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deduce Y in terms of the ¥/, , and so on; therefore, our method admits application for any value of 7.

From (2) we have that ¥, , =V, , implying that it is only necessary to develop expressions for

m=0
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