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Abstract

Let1” (1 < p < ) be the Banach space of all p-summable sequences (bounded sequences for
p =) of complex numbers undet the standard p-norm on itand Cd be a composition operator on
I” induced by a function ¢ on N into itself. In this paper we discuss the ascent and descent of
Productand Sum of two composition operators on 1’ spaces.

Introduction
Let X denote an arbitrary vector space and T be a linear operator on X. Let D(T), N(T) and

R(T) denote domain, kernel and range of T respectively. Let N denote the set of natural numbers.
The following statements and definitions are relevant and instructive in our context.

Theorem 1.1. N (I"cN (T");n=0,1,2....1f N (T") = N (I for some k, then N (T") =N
(T") whenn > k.

Definition 1.1. If there is some integer n > 0 such that N (T) = N (I""), the smallest such integer
is called the ascent of T and is denoted by a(T). If no such integer exists we say that a(T) = 0.

Theorem 1.2. R(T"")cR(T");n=0,1,2....If R(T""") = R(T") for some k, then R(T") = R(T")
whenn = k.

n+1

Definition 1.2. If there is some integer n > 0 such that R(T"") = R(T"), the smallest such integer
is called the descentof T andis denoted by d(T). If no such integer exists we say that d(T) = 0.

Theorem1.3. If a(T)is finiteand d(T) =0, thena(T) = 0.
Theorem1.4. If a(T)and d(T) are both finite, then necessarily a(T) < d(T).
Theorem1.5. If D(T) =X and the ascentand descentof T are both finite, they are equal.

Composition operatots on 1’ spaces

The composition operator C on 1" induced by a function ¢ on N into itself is defined by
C,(H) = f.¢ forall fel’. Itis well known that a necessary and sufficient condition for a function ¢ on
N into itself to induce a composition operator on 1" is that the set { | ¢'(n) | : n }is bounded.
Here | ¢'(n) | denotes the number of elements in ¢ (n) ; (see [20] and [24]).

The study of ascent and descent of an operator has been done as a part of spectral
properties of an operator (see [1], [2], [5] and [6]). Since composition operators provide diverse and
illuminating examples of operators which leads to useful insight into structure theory of operators,
itis desirable to study ascent and descent of these operators and their sum and product.
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Examples 2

We now give different examples of product of two composition operators which is given
below :

Example 2.1. Let$ beaself-map on defined as follows.

¢(ﬂ>={

Hete a(Cd) = 0 and d(Cd) = 0. Cleatly C¢Cop # CoCh
Let ¢ be a self-map on N defined as follows.

1, if n=12
n—=1, i n>2

n, i nis odd
Qp(n)= L
n—1, if n is even.
Here a(Cp) = 1 = d(Cg). Cleatly C¢ Cp # CpC ¢ -
Buta(C¢ Cyp)=1=d(C¢ Cyp)and a(CpC@) =1 =d(CpCq).
Ascent and Descent of Sum and Product of two Composition Operators
Example 2.2. Let @ be a self-map on N defined as follows.
n, if nis odd
P(n)= { o
n—1, if n is even.
Here a(Cd) = 1= d(C¢).
Let @be a self-map on N defined as follows.
1, i n=12
o(n)=12 in=3
n+1 if n>3.
Here a(Ce) = © = d(Co). Cleatly Cdp # CoCd
But a(CoCop) = 2 = d(CHCo) and a(CoCd) =1= d(CpC0).

Example 2.3. Let ¢ be a self-map on N defined as follows.
1, =12

2, if n=3
¢ (n)= :
n+1, if ne{s.79..}
n=1, if n€ {4.6.8....)
Here a(Cd) = 3 = d(C¢).
Let @be a self-map on N defined as follows.
pn) =n+ 2, if nis odd
and

p(2n-2) = p(n) = n,if n € {2,4,6,8,10........ }.
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Here a(Ce) = © = d(Co). Cleatly CH)Ce # CoCd
But a(COCop) = 1 = d(CHCo) and a(CoCd) =1= d(CpCd).

Example 2.4. Let ¢ be a self-map on N defined as follows.

n, if nis odd
b(n)= {n -1 ]z; n s even.
Here a(Cd) = 1 = d(Co).

Let ¢ be a self-map on N defined as follows.
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n, if nis odd
¢(”)={ /

n—1, if n is even.
Here a(Ce) = 0 = d(C@). Cleatly C¢Cop# CoCd
But a(CoCop) = 1 = d(CHCo) and a(CoCd) =1= d(CpCd).

Example 2.5. Let ¢ be a self-map on N defined as follows.
@ (5) =s-lifs € {23,..... n}

and
¢ () =tifteN-{23,.... n}.

Here a(Cd) = 0 = d(C¢).

Let @be a self-map on N defined as follows.
@(t)=1tVieN

Here a(Ce) = 0 = d(Ce). Cleatly COCop = CoCd

But a(COCp) = 0 = d(CHCo) and a(CoCd) = 0 = d(CpCh).

3. RESULTS
In this section we give a characterization of product of two composition operators on 1"
spaces.

Theorem 3.1. Let Cdand Co be two composition operators on 1" spaces and CHCo= CoCd. Then
the following results hold.
() a(CHCo) =Max {a(Ch),a(Co); (i) d(CHCe) = Max {d(C4), d(Ce)}.
Proof. (i) Case-I: If a(Cd) = 2 or a(Cp) = . Then result (i) is obviously true.
Case-II: If 2(C$ ) = m < o and a(C@) = n < o0, This implies that R($") = R($™") and R(¢") =
R(@""). Now suppose n > m, Max {m,n} = n. We claim that N((C$C@)"") = N((CHCo)"). Let f
e N((COC@)™"). This implies that (COCe)""' () = 0. Since CHCp = CoCd
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Ascent and Descent of Sum and Product of two Composition Operator
then (C¢""' Co"")(f) = 0.This implies that f(@""'¢"") = 0. Since R(¢p™) =
R (™) and R(@") =R(@""). Hence f (¢" ¢") = 0. Therefore (CHCep)” (f) = 0.
Thus fe N (CoCp)"). Thus
N (CHCO)™) SN (CICO)). 1)

Sinceitis obvious that

N (CHC)) =N ((CHCe)™). )
Combining equations (1) and (2), we get

N (CHC)"™) =N ((CHCq)).
Hence a(COC@) < n = Max {a(CP),a(C@)}.

(i) Case-I:If d(Cd) = or d(Cp) = %. Then result (ii) is obviously true.

Case-1II: If d(C¢) = m < o0 and d(Cp) = n < oo. This implies that ¢ : R(¢"™) — R($") is injective
and @ : R(@™) — R(@") is injective. Since CHC = COCh then ¢ : R(O™) — R(™") is injective
and @ : R(@™") — R(@"") is injective for each i > 1. Now suppose n > m, Max{m, n} = n. We
claim that (¢@ ) : R((99)") — R(($@)") is injective. Let k, eR(¢") and k, € R(¢") such thatk, # k, .
Itis given that ¢ : R($") — R(¢") is injective and @ : R(¢") — R(@") is injective. This implies that
ok,) # b(k.) and (k) # ok, ). Thus 09)(K,) # (69)( k. ). Therefore (9¢) : R(69)") —
R((¢9)") isinjective.

Hence d(CoCop) <n = Max {a(Cd),a(Cp)}. m

Theorem 3.2. a(CHCop) = 0if and onlyif there exists a sequence of distinct
integers {n,} such thatn,  R((¢ ¢)") butn, € R((@ $)") foreachk >1.

Proof. COCop = Cd.@ is a composition operator induced by @.¢p Now by theorem
3.1in [5] follows thata(CdCep ) = % if and onlyif there exists a sequence of distinct
integers {nk} such thatn, & R((¢.0)") butn, € R((¢.)"") foreachk>1. O

Theorem 3.3. d(COCe) = © if and only if (¢.9) : R((@.0)") — R((@.9)") is not one-to-one for
allk > 0.
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Proof. CH)Co = C@.¢ is a composition operator induced by @.¢. Now by theorem 3.2 in [5] follows
that d(CHCo) = 0if and onlyif (@.0): R(¢.9)") = R((¢0.9)") is not one-to-one forallk > 0. u]
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Theorem 3.4. a(CdCop) = 0 if and onlyif there exist a sequence {E, } k=1 of subsets of N such
that each E, is infinite, E, CR((9.9)"") and R((¢.0)") N E, =¢ for each k € N. O

Proof. CH)Cop = C@.¢ is a composition operator induced by®.¢. Now by theorem 3.1in [6] follows
that a(COC@) = 0 if and only if there exista sequence {E,}",_, of subsets of N such that each E, is
infinite, B, S R((¢.9)" ") and R((9.9)") N E, = ¢ foreach ke N. O

Theorem 3.5. d (CdCe) = o if and only if for each k = 0; | o' (n) | > 1 for infinitely many
ne R(@.4))-

Proof. CHCe = Co.¢ is a composition operator induced by ¢.¢. Now by theorem 3.2 in [6] follows
that de(COCe) = o if and only if for each k > 0; |¢'(n)|> 1 for infinitely many
neR((94)). o

4. Example

We now give different examples of sum of two composition operators which is given below :

Example 4.1. Let ¢ be a self-map on N defined as follows.
o) =1=19¢@2)

and

o(n) =n, Vn = 3.
Herea(Cd) =1 =d(C¢).
Let@beaself-mapon N defined as follows.

?3)=3=0

and

o(n) = n, if neN—{3, 4}.
Herea(Co) = 1 =d(Cq).
Buta(Co + Cp) =0=d(Co + Co).

Ascent and Descent of Sum and Product of two Composition Operators

Example 4.2. Let ¢ be a self-map on N defined as follows.
o) =1=0@2)

and
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d(n)=n-1,Vn=3.
Here a(Cd) = 0and d(C) = .
Let@beaself-mapon N defined as follows.

n, if nis odd
®() oo
n—1, if n iseven.

Herea(Cp) =1=d(Cep).
Buta(Cd + Ce) =0and d(Cd + Cep) = .

Example4.3.Let ¢ be aself-map on N defined as follows.
n 1, if nisodd

b(n) n—1, if n iseven.
Herea(Cd) = 0=d(C¢).
Let @ be a self-map on N defined as follows.

n, #f nis odd
@ () o
n—1, if n iseven.

Herea(Cop) =1=d(Ceo).
Buta(Cd + Ce) =0=d(Cd + Cop).

Example 4.4. Let ¢ be a self-map on N defined as follows.
¢(n) = 2n-1, for each natural number.
Here a(Cd) =0 and d(Cd) = 0.
Let@beaself-map on defined as follows.

¢(n) = 2n, for each natural number.
Here a(Cp) =0 and d(Cop) = 0.
Buta(Cd+ Ce) =c0and d(Cp + Cep) =0.
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Example 4.5 Let ¢ be a self-map on N defined as follows.
o) =1=90)

and

o(n) =n,n V=3

Herea(Cd) =1=d(Co).
Let @ be aself-map on N defined as follows.

n, if nis odd
@ (n)

n—1, if n iseven.
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Herea(Co) = 1=d(Cq).
Buta(Cd + Co) = 1 = d(C + C).

Example 4.6 Let ¢ be a self-map on N defined as follows.

n 1, if nisodd
¢(n) o

n—1, if n iseven.
Hetea(Cp) =0=d(Cep).
Let @ be a self-map on N defined as follows.

¢(n) =n+1, for each natural number.

Here a(Ce) =0 and d(Ce) = 0.
Buta(Co + Cop) =0=d(Co + Co).

5.RESULTS

In this section we study ascent and descent of sum of two composition operators
onl’spaces.
Theorem 5.1. If ¢ or Zis an injective self-map on N then d(Cdp+Ce) = 0.
Converseis not true.
Proof. If ¢ is injective then R(C$) =1". Now R(C + Cp) = R(Cd) + R(Cp) =1"+ R(Cp) =1". Thus
d(Cp+Co) = 0. The following example shows that the converse is not true. ]
Example 5.1. Let ¢ be a self-map on N defined as follows.
(1) =1= ()

and
d(n) =n, foreachn=> 3.
Let @ be a self-map on N defined as follows.
P@) =3=0*

and
¢(n)=n,if ne N {3,4}.
Thend(C¢ + Ce)=0.

Ascent and Descent of Sum and Product of two Composition Operators

Theorem 5.2. If ¢ and ¢ be any two self-maps on N into itself and let Co+@ denote the
composition operator induced by ¢ + ¢. Then a(Ch+@) = 0.

Proof. Letn, = 1. Fork > 2, let n,_ denote the smallest element of R((G+) ).
Then clearly we get a sequence {n,}",_, such that n, € R((¢ + ¢)*)) but n, R((¢+¢)"). Hence by
theorem 3.2 of [5] it follows thata(Cd+¢) = .
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Theorem 5.3. d(C + @) = if and onlyif (¢ + @) : R(($ + ¢)") = R(($ + 9)") is not one-to-one
forallk = 0.

Proof. Follows from theorem 3.2 of [5]. o

Remark 5.1. Let ¢ and @ are both injective neither of them is sutjective. If ¢ # @ then cleatly
a(Cop +Cop) = 0.

References

[1]
2]

Aupetit B.; Primer on Spectral Theory,Springer-Verlag New-York 1991.

Burgos M., Kaidi A., Mbekhta M., Oudghiri M.; The Descent Spectrum and Perturbations,].
Operatot Theory 56(20006), 259-271.

Carlson J.W.;The Spectra and Commutants of Some Weighted Composition Operators,
Trans.Amer.math.Soc.317 (1990), 631-654.

Carlson ].W; Hyponormal and Quasinormal Weighted Composition Operators on I, Rocky
Mountain J.Math.20 (1990), 399-407.

Chandra H.,Kumar P.; Ascent and Descent of Composition Operators On 1" Spaces, Demon
stratio Mathematica X111, No.1 (2010),161-165.

Chandra H.,Kumar P; Essential Ascent and Essential Descent of a Linear Operator and a
Composition Operator,preprint.

Grabiner S.; Uniform Ascent and Descent of Bounded Operators,].Math. Soc.Japan
34(1982),317-337.

Halmos PR.,A Hilbert Space Problem Book,Van Nostrand,Princeton,N.].,1967.

Komal,B.S.;and singh R.K.,Composition Operators on 1" and its Adjoint,
Proc.Amer.Math.Soc.70 (1978), 21-25.

Kelley,R.L.;Weighted Shifts on Hilbert Space,Dissertation,University of Michigan,Ann Ar
bor,1966.

Kumar A.,Singh R.K;Multiplication Operators and Composition Operators with Closed
RangesBull. Austral. Math.Soc.16 (1977),247-252.

Kumar,D.C.,Weighted Composition Operators, Thesis University of Jammu,1985.

Kumar R.; Ascent and Descent of Weighted Composition Operators On Lp
spaces,Matmatick Vesnik 60(2008),47-51.

Kaashoek M.A.; Ascent,Descent,Nullity and Defect: A Note On a Paper by A.E.Taylor
Math.Ann;172(1967),105-115.

Kaashoek M.A.,Lay D.C.; Ascent,Descent,and Commuting Perturbations, Trans. Amer. Math.
Soc. 169(1972),35-47.

Lay D.C.; Spectral Analysis Using Ascent,Descent,Nullity and Defect ; Math. Ann.
184(1970),197-214.

Lal N., Tripathi G.P; Composition Operators on I’ of the form Normal Plus
Compact,].Indian.Math.Soc. 72(2005), 221-226.

(230)



Mbekhta M.; Ascent,Descent et Spectre Essential Quasi-Fredholm, Rend. Circ. Math.
Palermo(1997),175-196.

Mbekhta M., Muller V.; On the Axiomatic Threory of Spectrum II, Studia Math. (1996), 129
147.

Nordgren E.A.; Composition Operators on Hilbert Spaces,].Math. Soc.Japan 34(1982), 317
337.

Nordgren E.A.; Composition Operators,Canada. .Math.20 (1968), 442-449.

Parrott S.K.,Weighted Translation Operators,Thesis,University of Michigan,Ann
Arbor,1965.

Shields A.L.; Weighted Shift Operators and Analytic Function Theory, Topics in Operator
Theory(C.Pearcy,ed.),Math.Surveys, no.(13),Amer. Math.Soc.,Providence,R.1.,1974,49-128.

Singh L.; A Study of Composition Operators on 12, Thesis, Banaras Hindu University 1987.

Tripathi G.P;A Study of Composition Operators and Elementray Operators, Thesis, Banaras
Hindu University 2004.

Taylor A.E., Lay D.C; Introduction to Functional Analysis, John- Wiley, New York
Chichester-Brisbane 1980.

Whitley R.; Normal and Quasinormal Composition Operators,Proc.Amer.Math.Soc.
70(1978),114-118.

(231)



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

