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Abstract

In this paper, we study involute curves of biharmonic Reeb curves in
3-dimensional Kenmotsu manifold.
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1. Introduction

The involute has some properties that makes it extremely important to the gear
industry: If two intermeshed gears have teeth with the profile-shape of involutes (rather
than, for example, a "classic" triangular shape), they form an involute gear system.
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A smooth map ¢: N — M s said to be biharmonic if it is a critical point of the
bienergy functional:

1
E.(9)= [ S[T@ dv,
where T(¢) := trV?d¢ is the tension field of ¢

The Euler--Lagrange equation of the bienergy is given by T,(¢) =0. Here the
section T,(¢) is defined by

T, () =—A,T($)+ trR(T(¢),dg)dg, (1.1)

and called the bitension field of ¢. Non-harmonic biharmonic maps are called proper
biharmonic maps.

2. Preliminaries

Let M 2”+1(¢, En, g) be an almost contact Riemannian manifold with 1-form 1,

the associated vector field &, (1,1)-tensor field ¢ and the associated Riemannian metric
g . Itis well known that [2]

9¢ =0,1(&)=1,n(¢X)=0, 2.1)

#*(X)= =X +n(X )&, (22)

g(X,&)=n(Xx), 2.3)

9(#X.¢Y) = g(X.Y)=n(Xn(¥) (24)
for any vector fields X, Y on M . Moreover,

(Vxg)¥ =-n(YJp(X)-g(X,4Y)5, X.Y € x(M), (25)

V&= X-n(X), (2.6)

where V denotes the Riemannian connection of g, then (M,¢,§,n,g) is called an
Kenmotsu manifold [2].

3. Biharmonic Reeb Curves in the 3-Dimensional Kenmotsu Manifold

Let ¥ be a non geodesic curve on the 3-dimensional Kenmotsu manifold
parametrized by arc length. Let {T,N,B} be the Frenet frame fields tangent to the
3-dimensional Kenmotsu manifold along y defined as follows:
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T s the unit vector field y tangent to », N is the unit vector field in the

direction of VT (normal to y), and B is chosen so that {T,N,B} is a positively
oriented orthonormal basis. Then, we have the following Frenet formulas:

V. T=xN, VN =—«T+18B, VB =-\, (3.1)
where x is the curvature of ¥ and t its torsion and
o(T.T)=1,9(N.N)=1,9(B.B)=1, g(T,N)=g(T.B)=g(N.B)=0. (32

Theorem 3.1. ([10]) Let (M 0,.&,1m, g) be an 3-dimensional Kenmotsu manifold
and unit vector field X orthogonal to the Reeb vector field &. Then,

R(&, X)E = X, (3.3)
R(X,&)X =¢&. (3.4)

Theorem 3.2. ([10]) ¥ is a non geodesic biharmonic Reeb curve which are

either tangent or normal to the Reeb vector field 3-dimensional Kenmotsu manifold if and
only if
Kk = constant =0, K*+712 =1, T = constant. (3.5)

To determine ¥ we need the following result.

Corollary 3.3. If ¥ is a non geodesic biharmonic Reeb curve which are either
tangent or normal to the Reeb vector field 3-dimensional Kenmotsu manifold, then y is a
helix.

Proof. From the above Theorem it can be easily seen that y is a helix.

We consider the special 3-dimensional manifold

K= y.2)eR?:(x,y,2)% (0.0,0)}

where (x, Y, z) are the standard coordinates in R®. The vector fields

el:zi,ezzzi,esz—zi (3.6)
OX oy 0z

are linearly independent at each point of K . Let g be the Riemannian metric defined by

g(eliel)z g(eZ’ez)z 9(63,63)21,
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g(ese,)=gle, )= gle; ) = 0. (3.7)
The characterising properties of y(K) are the following commutation relations:
[e,.e,]=0,[e,.e;]=¢e,,[e,.e;]=¢€,. (3.8)
Let 1 be the 1-form defined by
n(Z)=9(Z,e;)foranyZ € y(M)
Let be the (1,1) tensor field defined by
¢(e)) = —€,,0(e,) = €,,4(e5) = 0.

Then using the linearity of and g we have

n(e;) =1, (3.9)
$*(2)=-Z +n(Z)e,, (3.10)
9(4Z,4W)=g(Z.W)-n(Z)nW), (3.11)

for any Z,W € y(K). Thus for e, = ¢, (¢,§,77, g) defines an almost contact metric
structure on K.

Now, we consider biharmonicity of curves in the special three-dimensional
Kenmotsu manifold K .

Theorem 3.4. ([10]) Let y:1 — K be a non geodesic unit speed biharmonic
Reeb curve which are either tangent or normal to the Reeb vector field 3-dimensional
Kenmotsu manifold K . Then, the parametric equations of y are

C1 Sin5§0 e—COS(pS( K

X(s)= cos( S+0)
) k% +sin‘ @ cos’ sine  sin’g
+cospsin(—;—s+0))+C,,
sin“o
_ Cisin®e .
(s)= 2 ———e " (—c0s pCOS(——5+0) (3.12)
K +sin‘@cos’ sin’e

K . K
+— sin(— 5 s+0))+C,,
sin“¢@ sin“@
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z2(s)=Ce ",

where C, C,, C,, C, are constants of integration.

4. Involute Curves of Biharmonic Reeb Curves in the 3-Dimensional
Kenmotsu Manifold K

Definition 4.1. Let unit speed curve y:1 —K and the curve g:1 ->K be
given. For Vs e I, then the curve S is called the involute of the curve y, if the tangent
at the point y(s) to the curve y passes through the tangent at the point 3(s) to the
curve B and

g(T*(s), T(s)) =0. (4.1)

Let the Frenet-Serret frames of the curves y and S be {T,N,B} and
{T*, N*, B*}, respectively.

Theorem 4.2. Let y:1 — K be a non geodesic unit speed biharmonic Reeb
curve which are either tangent or normal to the Reeb vector field 3-dimensional
Kenmotsu manifold K and the curve S be involute of the the curve ¥ and let p be a

constant real number. Then, the parametric equation of involute curve S are

=5
X(s)=— C%Sln ¢ ——e ™" (——cos( 1<2 s+0)
K° +sin"@cos” @ sin“@ sin“g
. K —C0S¢8 i . K
+Ccospsin(—; s+a))+(p—s)Cle sin ¢ sin(— s+o0)+C,,
@ sin“@
4.2)
~ C,sin®
y(s)=—; %sln ¢ —e " (—c0os @ COS(——S+0)
K° +sin"@cos @ sin“@
+— X sinE sy (p—s)Ce ™" si K C
— — o))+(p—-s)Ce sin g cos(——s+0)+C,,
sin“g  sin“e sin“g

Z(s)=Ce ™" —(p—s)C,e ™" cosgp,

where C, C,, C,, C, are constants of integration.
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Proof. The curve S(s) may be given as

B(s) = 7(s)+u(s)T(s) (4.3)

Since y is biharmonic, ¥ is a helix. So, without loss of generality, we take the
axis of y is parallel to the vector e,. Then,

9(T,e;)=T, =cose, (4.4)
where ¢ is constant angle.

If we take the derivative (4.3), then we have
B (s) = [L+u (5)T(s)+u(s)x(s)N(s).
Since the curve S is involute of the curve y, g(T*(S), T(S)): 0. Then, we get
1+u'(s) = 0oru(s) = p—s, (4.5)
where p is constant of integration.

Substituting (4.5) into (4.3), we get

B(s)=y(s)+(p—s)T(s) (4.6)
On the other hand, from Theorem 3.3 we obtain
T =sin gsin(— KZ S+0)e, +sin ¢ CoS(———S+0)e, +CoS¢e,. @.7)
sin“ @ sin“ @

Using (3.8) in (4.7), we obtai
T=(Ce“**singsin

s+0),Ce " sinpcoy KZ s+0),-Ce “*cosp). (4.8)
@ sin"@

Then from (4.8) we find the equalities (4.2). This completes the proof.

K
(
sin’

From (4.2) we can give the following result.

Corollary 4.3. Let y:1 - K be a non geodesic unit speed biharmonic Reeb
curve which are either tangent or normal to the Reeb vector field 3-dimensional
Kenmotsu manifold K and the curve S be involute of the the curve y and let p be a
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constant real number. Then, the parametric equation of involute curve g in terms of
(3.7) are

ol C,sin’@
X(S)_ 2 1. 4 2
1-7°+sin"@cos ¢

2 2
e—cos<ps (\/1 —7 \/1 B

T
——C0S(———5S+0)
sin“@ sin“@

/ 2
+cos<osin(%—zfs+o—))+(p—s)Cle‘°°S“’ssin psin( %2
sin“g i

—Ts+o—)+Cz,
sin‘p
.5 2
y(s)= 2C15_'n4¢ - e"cos@(—COS¢COS(#S+G)
1-7° +sin"@cos“ @ sin“ @
N R . V1-7?
+— 21 sin(— 21 S+O'))+(p—s)Cle_C°S‘”SSIn¢COS(_—:S+O')+C3,
sing sin‘p sin‘p

Z(s)=Ce ™" —(p—s)C,e ™ cosg,

where C, C,, C,, C; are constants of integration.

We use Mathematica both involute curve and biharmonic curve, we have:

‘_‘T, *‘-%:_ = -
‘\i _
| ]
\ | L
\ ¢
{ L=
1 . e f:\ ) ’ j>
: | 1
| k,-’ﬂ?
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