

Volume 64, Issue 1, 2020

Journal of Scientific Research

Institute of Science,

Banaras Hindu University, Varanasi, India.

 260

DOI: http://dx.doi.org/10.37398/JSR.2020.640136

Abstract: Knapsack problem is finding the optimal selection of

objects to get maximum profit. Knapsack problem has a wide range

of application in different domain such as production,

transportation, resource management etc. Knapsack problem

varies with change in number of items and number of objectives. 01

knapsack problem is reported as a classical optimization problem

under NP category. Harmony search (HS) algorithm is a popular

heuristic algorithm investigated to solve different optimization

problems. This paper presents harmony search for solving single

objective and multi-objective knapsack problem. Performance of

HS is tested with 43 instances of single objective knapsack problem

taken from three datasets. HS provides optimal results except for

three instances. 46 instances of 01 knapsack problem with three,

four and five objectives are tested. Experiments show that better

results are obtained with an increase in harmony memory with

better exploration in objectives.

Index Terms: Harmony search algorithm, knapsack problem,

optimization problem.

I. INTRODUCTION

The knapsack problem is a constrained combinatorial

optimization problem. This is a classical NP problem in

operation research (Bansal & Deep, 2012). It has various

applications in different industries. Some of the application areas

of knapsack problem are,

 project selection

 resource distribution

 resource management/scheduling

 power allocation management.

Single objective 01 knapsack problem is well known problem.

The problem description is presented by many authors. In 01

knapsack problem, items with varying weights and respective

profits are given. A knapsack of capacity is given. The objective

is to select objects in such a way that maximum profit should be

gained with available capacity. Given a set of n objects which

are numbered from 1 up to n. Each object i has a weight Wi and

associated profit Pi. Maximum weight capacity of knapsack is,

M.

Objective Function:

Maximize: ∑ PiXi for i=1 to n (1)

 Subject to: ∑WiXi ≤ M for i=1 to n

 Xi ∈{0, 1} for i=1 to n

Here Xi has value 1 is it is selected else 0. The objective of the

problem is to maximize the sum of the profits of the items

selected in the knapsack with sum of the weights less than or

equal to the knapsack's capacity.

Multi-objective optimization means optimizing more than one

objective function simultaneously. Multi-objective optimization

problems are present in different areas such as transportation,

engineering, economics etc. The problem is difficult when the

objectives are conflicting. The definition of multi-objective

knapsack is taken from (Kirlik & Sayın, 2014). For multi-

objective knapsack problem equation (1) is the set of p objective

functions. Each objective function is the total profit of selected

objects. In case of multi-objective knapsack problem, multiple

pair of weights and associated profits of the objects are known.

The objective is to maximize profit is all given cases.

In literature, different heuristic algorithms have experimented

for unconstrained and constrained optimization problems.

Different heuristic and metaheuristic algorithms are

experimented for solving 01 knapsack problem.

 Evolutionary algorithm (Liu & Liu, 2009)

Solving single and multi-objective 01 Knapsack

Problem using Harmony Search Algorithm

Amol C. Adamuthe1*, Vaishnavi N. Sale1, and Sandeep U. Mane2

1Dept. of CS & IT, RIT, Rajaramnagar, Sangli, MS, India. alembantemulu184@gmail.com, vishal.pup@gmail.com
2Dept. of CSE, RIT, Rajaramnagar, Sangli, MS, India. manesandip82@gmail.com

Journal of Scientific Research, Volume 64, Issue 1, 2020

 261

Institute of Science, BHU Varanasi, India

 Genetic algorithm (Zhao et al., 2009; Pradhan et al.,

2014)

 Particle swarm optimization (Bansal & Deep, 2012; Li &

Li, 2009; Ouyang &Wang, 2012)

 Wolf Pack Algorithm (Gao et al., 2018)

 firefly algorithm (Hajarian et al., 2016; Bhattacharjee &

Sarmah, 2015)

 shuffled frog leaping algorithm (Bhattacharjee & Sarmah,

2014)

Genetic algorithms, particle swarm optimization, differential

evolution are popular heuristic/meta-heuristic algorithms.

Harmony search algorithm is a population-based algorithm that

imitates the music improvisation process used by the musicians.

Harmony search is used to solve various problems (Geem, 2009;

Rao et al., 2010; Fesanghary et al., 2008; Adamuthe & Nitave,

2018).

Harmony search algorithm is investigated to optimize

different mathematical functions and real world applications. It

is investigated to solve different engineering problems from civil

engineering, mechanical engineering, transportation, electrical

engineering, telecommunications, image processing etc.

(Askarzadeh & Rashedi, 2018; Geem, 2008)

 Rosenbrock’s banana function and multiple local optima

functions (Lee & Geem, 2005)

 Optimal designing of wireless sensor networks (WSN)

(Guney & Onay, 2011).

 Water distribution network design problem was solved in

(Geem 2012)

 Transportation problem (Salcedo-Sanz et al. 2013),

 Improve the accuracy of ANN for classification (Kulluk et

al. 2012)

This paper presents harmony search algorithm for solving

knapsack problem. The objective of this paper is to optimize

single objective and multi-objective 01 knapsack problem using

harmony search algorithm.

The next section briefly describes harmony search algorithm

for solving knapsack problem. Section III describes the

experimental details, results and discussion. To end, in Section

IV presents conclusions of our work.

II. HARMONY SEARCH ALGORITHM

Harmony search is population-based heuristic algorithm. The

algorithm is influenced by the music improvisation process

(Wang et al., 2015). In the last decade, harmony search

algorithm is investigated to solve various optimization problems.

Figure 1 presents the pseudocode of harmony search algorithm

for 01 knapsack problem.

The fundamental steps involved in harmony search algorithm

are (Wang et al., 2015):

 Step 1: Initialize the parameters of the algorithm. Harmony

search algorithms have three important parameters.

- harmony memory size (HMS),

- harmony memory consideration rate (HMCR), and

- pitch adjusting rate (PAR)

 Step 2: Randomly initializing harmony memory (HM). The

initial HM consists of randomly generated solutions.

 Step 3: Improvise a new solution from HM. HMCR

indicates the probability of selecting a component from

initial HM for improvisation. PAR is the probability of

mutation for selected solution.

 Step 4: Update the harmony memory. If the improvised

solution obtained in step 3 is better than the solution in the

HM, then it will replace the later. Otherwise, it is simply

neglected.

 Step 5: Repeat steps 3 and 4 until the termination condition

is satisfied. Generally, termination condition is maximum

iterations.

Algorithm 1. Harmony Search for 01 Knapsack problem

Input: A Number of objects, weights & profits of all objects and

knapsack capacity.

Output: Profit and selection of objects.

Initialize HMS, HMCR and PAR and maximum iterations

Define objective function

/* Initialization harmony memory strategy */

while i ≤ HMS do

 while j ≤ number_of_objects do

 if capacity ≥ current_obj_size then

 HM (i,j) = 1;

 capacity = capacity – current_obj_size

 else

 HM(i,j) = 0;

 end while

end while

 /* Improvise the harmony memory */

while i ≤ max_iterations do

 while j≤ HMS do

 while k ≤ no_of_obj do

 if rand[0,1] < HMCR then

 memory consideration (j);

 if(HM_diversity < threshold)

 PAR = PAR + (PARmax- ((PARmax-PARmin) x i) /

max_iterations)

 if rand[0,1] < PAR then

 pitch adjustment();

 else

 random solution();

 accept new solution if better than previous;

Journal of Scientific Research, Volume 64, Issue 1, 2020

 262

Institute of Science, BHU Varanasi, India

 end while

 end while

 end while

end procedure

Fig. 1. Harmony Search for 01 Knapsack problem

III. EXPERIMENTAL RESULTS AND PERFORMANCE COMPARISON

This section gives a detailed explanation about the datasets

used and the results obtained. The proposed algorithm is

implemented using ‘C’ programming language and tested on a

computer with the following specifications: Windows 7

Professional, Intel core i5-3210M CPU 2.5 GHz and 4 GB

RAM. For every dataset, harmony search algorithm was

executed for 10 times.

Memory representation: A 1D representation as shown in

figure2 is used to solve the knapsack problem. Number of

objects indicates the size of the array. The values in the array

indicate selection or rejection of the object. Value 1 and 0

indicate selection and rejection respectively. Figure2 shows the

sample solution with 10 objects. Objects 3, 4, 5, 7 and 9 are

selected.

The implementation consists of the following functions.

1. The memory representation is defined as integer array

named allocation [max_no_objects+1] and objective

values are stored in array fitness [max_no_obj_fun].

2. Function of import_data() to take the input values.

3. Function of export_data() to show out output values.

4. Initialize_harmony_mem() to initialize population for

harmony approach.

5. Calculate_penalty() to evaluate the values for defined

constraint violations.

6. Find_worst() function to find the worst value and replace

it with next good value, as it is important consideration in

harmony search approach.

7. Pitch_adjustment() to adjust the par index.

8. Memory_updation() to update memory after finding the

worst to remove it and to insert new best value in

harmony memory.

9. Best_fit() to find optimal solution from population.

10. Finally, mean() to calculate mean for overall population

and also for population respective of each iteration.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

 0 0 1 1 1 0 1 0 1 0

Fig. 2. Memory representation

A. Dataset 1:

Eight instances of knapsack are available at (Knapsack_01

Data for the 01 Knapsack problem) presented in table I.

Knapsack capacity, the weights of the objects, the profits of each

object and the optimal selection of weights is given.

Table I. Dataset 1

Dataset Dimension Parameter (capacity, weight, profit)

p_01 10 Capacity: 165

Weights: 23 31 29 44 53 38 69 85 89 8

Profits: 92 57 49 68 60 43 67 84 87 72

p_02 5 Capacity: 26

Weights: 12 7 11 8 9

Profits: 24 13 23 15 16

p_03 6 Capacity: 190

Weights: 56 59 80 64 75 17

Profits: 50 50 64 46 50 5

p_04 7 Capacity: 50

Weights: 31 10 20 19 4 3 6

Profits: 70 20 39 37 7 5 10

p_05 8 Capacity: 104

Weights: 25 35 45 5 25 3 2 2

Profits: 350 400 450 20 70 8 5 5

p_06 7 Capacity: 170

Weights: 41 50 49 59 55 57 60

Profits: 442 525 511 593 546 564 617

p_07 15 Capacity: 750

Weights: 70 73 77 80 82 87 90 94 98 106

110 113 115 118 120

Profits: 135 139 149 150 156 163 173 184

192 201 210 214 221 229 240

p_08 24 Capacity: 6404180

Weights: 382745 799601 909247 729069

467902 44328 34610 698150 823460

903959 853665 551830 610856 670702

488960 951111

323046 446298 931161 31385 496951

264724 224916 169684

Profits: 825594 1677009 1676628 1523970

943972 97426 69666 1296457 1679693

1902996 1844992 1049289 1252836

1319836 953277 2067538 675367 853655

1826027 65731 901489 577243 466257

369261

Table II shows the optimal profits and obtained profit values

using harmony search algorithm. For all the instances, harmony

search algorithm gives optimal results.

Table II. Results for dataset 1

Dataset Optimal Harmony search

p_01 309 309

p_02 51 51

p_03 150 150

p_04 107 107

Journal of Scientific Research, Volume 64, Issue 1, 2020

 263

Institute of Science, BHU Varanasi, India

p_05 900 900

p_06 1735 1735

p_07 1458 1458

p_08 13549094 13549094

B. Dataset 2:

Bhattacharjee & Sarmah (2014) has given ten test problems of

knapsack presented in table III. The problem dimension, object

weights and respective profits and knapsack capacity is given.

Authors have experimented with Shuffled frog leaping

algorithm to solve the problem instances. The dataset mentioned

in the paper algorithm by Bhattacharjee & Sarmah (2014) is

used test performance of harmony search. The obtained results

are presented in table IV. Harmony search gives best results for

seven instances. Table V shows that optimal values for dataset

f2, f8 and f10 are not obtained. The obtained values are close to

the best. Comparison of average results obtained shows that

shuffled frog optimization in better than harmony search

algorithm.

Table III. Dataset 2 (Taken from algorithm (Bhattacharjee & Sarmah,

2014))

f Dimen

sion

Parameter(w, p, b)

f1 10 w = {95, 4, 60, 32, 23, 72, 80, 62, 65, 46};

p = {55, 10, 47, 5, 4, 50, 8, 61, 85, 87}; b = 269.

f2 20 w = {92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32, 18, 56, 83,

25, 96, 70, 48, 14, 58};

p = {44, 46, 90, 72, 91, 40, 75, 35, 8, 54, 78, 40, 77, 15,

61, 17, 75, 29, 75, 63}; b = 878.

f3 4 w = {6, 5, 9, 7}; p = {9, 11, 13, 15}; b = 20.

f4 4 w = {2, 4, 6, 7}; p = {6, 10, 12, 13}; b = 11.

f5 15 w = {56.358531, 80.87405, 47.987304, 89.59624,

74.660482, 85.894345, 51.353496, 1.498459,

36.445204, 16.589862, 44.569231, 0.466933,

37.788018, 57.118442, 60.716575};

p = {0.125126, 19.330424, 58.500931, 35.029145,

82.284005, 17.41081, 71.050142, 30.399487,

9.140294, 14.731285, 98.852504, 11.908322,

0.89114, 53.166295, 60.176397}; b = 375.

f6 10 w = {30, 25, 20, 18, 17, 11, 5, 2, 1, 1}; p = {20, 18, 17,

15, 15, 10, 5, 3, 1, 1}; b = 60.

f7 7 w = {31, 10, 20, 19, 4, 3, 6}; p = {70, 20, 39, 37, 7, 5,

10}; b = 50.

f8 23 w = {983, 982, 981, 980, 979, 978, 488, 976, 972, 486,

486, 972, 972, 485, 485, 969, 966, 483, 964, 963, 961,

958, 959} ; p = {81, 980, 979, 978, 977, 976, 487, 974,

970, 485, 485, 970, 970, 484, 484, 976, 974, 482, 962,

961, 959, 958, 857} ; b = 10000.

f9 5 w = {15, 20, 17, 8, 31}; p = {33, 24, 36, 37, 12}; b =80.

f10 20 w = {84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56, 18, 58, 14,

48, 70, 96, 32, 68, 92}; p = {91, 72, 90, 46, 55, 8, 35,

75, 61, 15, 77, 40, 63, 75, 29, 75, 17, 78, 40, 44};

b = 879.

Table IV. Comparison of results for dataset 2

Functions

Results obtained by

Harmony Search

Results of Shuffled Frog

taken from

(Bhattacharjee & Sarmah,

2014)

Best Average Best Average

f1 295 167.4 295 287.7

f2 945 560.16 955 868

f3 35 26.5 35 35

f4 23 14.94 23 23

f5 481.06 390 481.07 408.55

f6 52 40.57 52 51.63

f7 107 52.58 107 106.73

f8 9731 7226.6 9759 9733.47

f9 130 71.89 130 130

f10 889 693.65 1010 879.9

Table V. Results for dataset 2

Dataset Optimal (Bhattacharjee

& Sarmah, 2015)

Harmony

Search

f1 295 295

f2 1024 945

f3 35 35

f4 23 23

f5 481.06 481.06

f6 52 52

f7 107 107

f8 9767 9731

f9 130 130

f10 1025 889

C. Dataset 3:

The third dataset is taken from (Donald L. Kreher). Total 25

test instances are available with objects varying from 8 to 24.

Obtained results are presented in table VI.

Table VI. Results for dataset 3

Dataset Optimal (Bhattacharjee &

Sarmah, 2015)

Harmony

Search

8a 3924400 3924400

8b 3813669 3813669

8c 3347452 3347452

8d 4187707 4187707

8e 4955555 4955555

12a 5688887 5688887

12b 6498597 6498597

Journal of Scientific Research, Volume 64, Issue 1, 2020

 264

Institute of Science, BHU Varanasi, India

12c 5170626 5170626

12d 6992404 6992404

12e 5337472 5337472

16a 7850983 7850983

16b 9352998 9352998

16c 9151147 9151147

16d 9348889 9348889

16e 7769117 7769117

20a 10727049 10727049

20b 9818261 9818261

20c 10714023 10714023

20d 8929156 8929156

20e 9357969 9357969

24a 13549094 13549094

24b 12233713 12233713

24c 12448780 12448780

24d 11815315 11815315

24e 13940099 13940099

D. Dataset 4:

The multi-objective knapsack problem instances are taken

from (Multiobjective optimization library). Instances are

available with 3, 4 and 5 number of objective functions (p). The

data file names are given in the following format, “KP_p-X_n-

Y_ins-Z”. X represents the number of objective functions, Y

shows the number of objects and Z is the instance number.

Table VII shows the results of 46 instances of knapsack

problems with 3, 4 and 5 objectives respectively. For instances

with three objective functions, the number of objects considered

are 10, 20 and 30. For instances with four and five objective

functions, the number of objects considered are 10 and 20. The

results are taken with varying harmony memory size from 30 to

240. Better results are obtained with increase in harmony

memory size.

Table VII. Results for dataset 4

Dataset Instances HM=30 HM=60 HM=90 HM=120 HM=150 HM=180 HM=210 HM=240

KP_p-3_n-10_ins-1 8461 9077 9077 9327 10138 10138 10566 10566

KP_p-3_n-10_ins-2 6687 6779 6779 6779 6779 6779 6998 6998

KP_p-3_n-10_ins-3 9562 9562 10744 10744 10744 10744 10744 10744

KP_p-3_n-10_ins-4 9118 9997 11122 11122 11122 11122 11122 11122

KP_p-3_n-10_ins-5 6996 6996 6996 7241 7241 7241 7241 7241

KP_p-3_n-10_ins-6 7534 9526 9526 9526 9526 9526 9526 9526

KP_p-3_n-10_ins-7 18146 18146 18146 18146 18146 18146 18146 18146

KP_p-3_n-10_ins-8 9658 9658 10457 10457 10457 10457 10457 10457

KP_p-3_n-10_ins-9 8874 9110 9652 9652 9723 10449 10449 10449

KP_p-3_n-10_ins-10 8656 8790 9197 9306 10681 10681 10681 10681

KP_p-3_n-20_ins-1 16215 17775 17775 17775 17775 17775 17775 17775

KP_p-3_n-20_ins-2 14792 15152 16350 16753 16753 16753 16753 16753

KP_p-3_n-20_ins-3 13198 15528 16215 16861 17194 17194 17194 17194

KP_p-3_n-20_ins-4 12923 13617 14085 15815 16413 18231 18231 18231

KP_p-3_n-20_ins-5 12260 13385 14350 14680 15044 15440 16446 16446

KP_p-3_n-20_ins-6 12253 13381 14487 15536 16081 17880 18474 18474

KP_p-3_n-20_ins-7 11871 12580 13759 15828 16023 17488 17488 17488

KP_p-3_n-20_ins-8 12408 14000 14902 15375 16268 17856 18458 18458

KP_p-3_n-20_ins-9 12667 13985 14511 15953 17431 18481 18481 19151

KP_p-3_n-20_ins-10 11984 13375 14138 15915 17491 18651 19346 19346

Journal of Scientific Research, Volume 64, Issue 1, 2020

 265

Institute of Science, BHU Varanasi, India

KP_p-3_n-30_ins-1 22366 23500 24168 24168 24099 24456 24456 24456

KP_p-3_n-30_ins-2 23416 23822 24217 26606 27641 27641 27641 27641

KP_p-3_n-30_ins-3 23239 25030 25890 26627 26786 27472 27472 27472

KP_p-3_n-30_ins-4 21281 22330 23778 25756 25756 27371 27500 27371

KP_p-3_n-30_ins-5 21847 22274 23344 26706 26948 28403 28403 28403

KP_p-3_n-30_ins-6 19812 20622 22620 25266 26556 26556 26556 26556

KP_p-3_n-30_ins-7 20219 21876 22749 23702 23240 24372 24372 24372

KP_p-3_n-30_ins-8 21651 22628 23789 24665 24671 27950 27950 27950

KP_p-3_n-30_ins-9 19171 21479 22700 24041 24277 24974 24974 24974

KP_p-3_n-30_ins-10 18731 19867 20195 23973 26363 26363 26363 26363

KP_p-4_n-10_ins-1 8850 9657 9657 10684 10684 11737 11737 11945

KP_p-4_n-10_ins-2 9906 10955 10955 10955 11103 11103 12118 12118

KP_p-4_n-10_ins-3 9385 10003 10003 10687 10687 11396 12556 13386

KP_p-4_n-10_ins-4 9470 9938 9938 10893 10893 12286 12464 12464

KP_p-4_n-10_ins-5 9983 9983 10570 11920 11920 12146 12146 12437

KP_p-4_n-20_ins-1 17448 18243 21994 21994 23628 23628 24374 25621

KP_p-4_n-20_ins-2 14173 15878 17874 18804 19055 19055 21244 21244

KP_p-4_n-20_ins-3 17483 18929 18929 20458 20458 21100 21100 21659

KP_p-5_n-10_ins-1 10142 10142 11633 11983 12494 14900 14900 15236

KP_p-5_n-10_ins-2 10949 10949 10949 12932 13773 14995 16024 16024

KP_p-5_n-10_ins-3 10968 10968 11363 11363 13933 13933 14818 14818

KP_p-5_n-10_ins-4 9421 9421 10074 10074 11360 11360 12039 12039

KP_p-5_n-10_ins-5 10112 10112 12860 13641 14701 14861 15204 15204

KP_p-5_n-20_ins-1 19619 20344 21976 23895 25748 25748 27812 27812

KP_p-5_n-20_ins-2 23478 24844 24844 27006 28912 28912 29331 29331

KP_p-5_n-20_ins-3 26410 28434 28434 31564 32593 32593 33960 33960

Figure 3 shows that the performance of harmony search

changes with the harmonic memory size. Figure 4 shows the

objective values for three objective instance. Results indicate

that importance is given to all three objectives. Harmony search

shows good exploration capability for multi-objective 01

knapsack problem.

CONCLUSIONS

Paper presents harmony search algorithm for 0/1 knapsack

problem. Experiments conducted on 43 instances of single

objective and 46 instances multi-objective 0/1 knapsack

problem. HS gives optimal results with 100% success rate for 40

instances of single objective knapsack problem. Shuffled frog

optimization algorithm is found better than harmony search

algorithm. There is further scope to improve HS algorithm for

improvement in average fitness of population. HS algorithm

performs well for multi-objective 01 knapsack problem. The

results show that importance is given to all objectives.

Journal of Scientific Research, Volume 64, Issue 1, 2020

 266

Institute of Science, BHU Varanasi, India

Fig. 3. Effect of Harmony memory size

Fig. 4. Results of three objectives for sample instance

0

5000

10000

15000

20000

25000

30000

35000

40000

HM=30 HM=60 HM=90 HM=120 HM=150 HM=180 HM=210 HM=240

Effect of Harmony Memory Size

KP_p-5_n-10_ins-1

KP_p-5_n-10_ins-2

KP_p-5_n-10_ins-3

KP_p-5_n-10_ins-4

KP_p-5_n-10_ins-5

KP_p-5_n-20_ins-1

KP_p-5_n-20_ins-2

KP_p-5_n-20_ins-3

Journal of Scientific Research, Volume 64, Issue 1, 2020

 267

Institute of Science, BHU Varanasi, India

REFERENCES

Adamuthe, A. C., & Nitave, T. R. (2018). Adaptive Harmony

Search for Optimizing Constrained Resource Allocation

Problem. International Journal of Computing, 17(4), 260-

269.

Askarzadeh, A., & Rashedi, E. (2018). Harmony Search

Algorithm: Basic Concepts and Engineering Applications.

In Intelligent Systems: Concepts, Methodologies, Tools, and

Applications (pp. 1-30). IGI Global.

Bansal, J. C., & Deep, K. (2012). A modified binary particle

swarm optimization for knapsack problems. Applied

Mathematics and Computation, 218(22), 11042-11061.

Bhattacharjee, K. K., & Sarmah, S. P. (2014). Shuffled frog

leaping algorithm and its application to 0/1 knapsack

problem. Applied soft computing, 19, 252-263.

Bhattacharjee, K. K., & Sarmah, S. P. (2015, December). A

binary firefly algorithm for knapsack problems. In 2015

IEEE International Conference on Industrial Engineering

and Engineering Management (IEEM) (pp. 73-77). IEEE.

Donald L. Kreher. Retrieved from

http://www.math.mtu.edu/~kreher/cages/Data.html

Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., &

Alizadeh, Y. (2008). Hybridizing harmony search algorithm

with sequential quadratic programming for engineering

optimization problems. Computer methods in applied

mechanics and engineering, 197(33-40), 3080-3091.

Gao, Y., Zhang, F., Zhao, Y., & Li, C. (2018). Quantum-

Inspired Wolf Pack Algorithm to Solve the 0-1 Knapsack

Problem. Mathematical Problems in Engineering, 2018.

Geem, Z. W. (2008). Harmony search applications in industry.

In Soft Computing Applications in Industry (pp. 117-134).

Springer, Berlin, Heidelberg.

Geem, Z. W. (2009). Particle-swarm harmony search for water

network design. Engineering Optimization, 41(4), 297-311.

Geem, Z. W. (2012). Effects of initial memory and identical

harmony in global optimization using harmony search

algorithm. Applied Mathematics and Computation, 218(22),

11337-11343.

Guney, K., & Onay, M. (2011). Optimal synthesis of linear

antenna arrays using a harmony search algorithm. Expert

Systems with Applications, 38(12), 15455-15462.

Hajarian, M., Shahbahrami, A., & Hoseini, F. (2016, March). A

parallel solution for the 0–1 knapsack problem using firefly

algorithm. In 2016 1st Conference on Swarm Intelligence

and Evolutionary Computation (CSIEC) (pp. 25-30). IEEE.

Kirlik, G., & Sayın, S. (2014). A new algorithm for generating

all nondominated solutions of multiobjective discrete

optimization problems. European Journal of Operational

Research, 232(3), 479-488.

Knapsack_01 Data for the 01 Knapsack problem. Retrieved from

https://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/k

napsack_01.html

Kulluk, S., Ozbakir, L., & Baykasoglu, A. (2012). Training

neural networks with harmony search algorithms for

classification problems. Engineering Applications of

Artificial Intelligence, 25(1), 11-19.

Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic

algorithm for continuous engineering optimization:

harmony search theory and practice. Computer methods in

applied mechanics and engineering, 194(36-38), 3902-

3933.

Li, Z., & Li, N. (2009, June). A novel multi-mutation binary

particle swarm optimization for 0/1 knapsack problem. In

2009 Chinese Control and Decision Conference (pp. 3042-

3047). IEEE.

Liu, Y., & Liu, C. (2009, April). A schema-guiding evolutionary

algorithm for 0-1 knapsack problem. In 2009 International

Association of Computer Science and Information

Technology-Spring Conference (pp. 160-164). IEEE.

Multiobjective optimization library. Retrieved from

http://home.ku.edu.tr/~moolibrary/

Ouyang, L., &Wang, D. (2012, May). New Particle Swarm

Optimization algorithm for knapsack problem. In 2012 8th

International Conference on Natural Computation (pp. 786-

788). IEEE.

Pradhan, T., Israni, A., & Sharma, M. (2014, May). Solving the

0–1 Knapsack problem using Genetic Algorithm and Rough

Set Theory. In 2014 IEEE International Conference on

Advanced Communications, Control and Computing

Technologies (pp. 1120-1125). IEEE.

Rao, R. S., Narasimham, S. V. L., Raju, M. R., & Rao, A. S.

(2010). Optimal network reconfiguration of large-scale

distribution system using harmony search algorithm. IEEE

Transactions on power systems, 26(3), 1080-1088.

Salcedo-Sanz, S., Manjarres, D., Pastor-Sánchez, Á., Del Ser, J.,

Portilla-Figueras, J. A., & Gil-Lopez, S. (2013). One-way

urban traffic reconfiguration using a multi-objective

harmony search approach. Expert Systems with

Applications, 40(9), 3341-3350.

Wang, X., Gao, X. Z., & Zenger, K. (2015). An introduction to

harmony search optimization method. New York: Springer

International Publishing.

Zhao, J., Huang, T., Pang, F., & Liu, Y. (2009, October).

Genetic algorithm based on greedy strategy in the 0-1

knapsack problem. In 2009 Third International Conference

on Genetic and Evolutionary Computing (pp. 105-107).

IEEE.

http://www.math.mtu.edu/~kreher/cages/Data.html
http://home.ku.edu.tr/~moolibrary/

