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Abstract—One of the most important branch of statistics
is survival and reliability analysis. There are various lifetime
models available in literature that have applications in these
fields. However the researchers always keep searching for more
flexible models that are effective in more complex situations.
With the same motivation, an effort has been made to introduce
a new distribution named as Generalized Inverse Power Lindley
distribution that is expected to turnout more constructive while
dealing with complex real life data. Various statistical properties
of the model have been derived. The parameter estimates
are obatined using Maximum Likelihood Estimation (MLE)
technique. Simulation study has been conducted to assess the
performance of maximum likleihood estimators. Applicability of
the proposed model to the real data has been investigated by
comparing the model with some existing distributions.

Index Terms—Exponentiation, Simulation, Quantile function,
Order statistics, Stochastic ordering

I. INTRODUCTION

Lindley distribution (LD) introduced by Lindley (1958) has
drawn a lot of attention from researchers because of its broad
applications in modeling the data having monotone hazard
rates. A Random Variable (RV) Z is said to have LD if its
probability density function (pdf) is given by

f(z, β) =
β2

1 + β
(1 + z) e−βz ; z > 0, β > 0 (1)

LD has been extended by various researchers including Ghi-
tany et al. (2008), Nadarajah et al. (2011), Ghitany et al.
(2013).

It has been observed that most of the real-life systems
have non-monotone(bathtub (BT) and upside down bathtub
(UBT)) hazard rates. For the analysis of lifetime data having
BT shape hazard functions, several lifetime models have been
introduced by many authors (see Mudholkar et al. (1993), Xie
et al. (1996), Xie et al. (2002)). Interestingly, the inverse class
of the probability models turn out very useful for modeling

UBT shape hazard functions. Sharma et al. (2015) introduced
Inverse Lindley distribution (ILD) with pdf given by:

f(z, β) =
β2

1 + β

(
1 + z

z3

)
e
−β
z ; z > 0, β > 0 (2)

Sharma et al. (2016) extended ILD by adding a parameter and
obtained a Generalized Inverse Lindley Distribution (GILD).
Note that Barco et al. (2016) also generalized ILD by taking
the transformation Z = Y

1
α where Y follows ILD. The pdf

of GILD is given by:

f(z, β) =
αβ2

1 + β

(
1 + zα

z2α+1

)
e
−β
zα ; z > 0, α > 0, β > 0 (3)

In this article a new three parameter distribution named
as Generalized Inverse Power Lindley Distribution (GIPLD)
has been introduced. The proposed distribution is obtained by
using the transformation H(z) = [G(z)]θ where G(z) is a
CDF and θ is a positive real number. The new distribution
thus obtained involves GILD and ILD as its sub-models for
θ = 1 and α = θ = 1 respectively. A RV Z is said to follow
GIPLD if its cumulative distribution function (CDF) is given
by:

G(z) =

[(
1 +

β

1 + β

1

zα

)
e
−β
zα

]θ
; z > 0 s(α, β, θ) > 0

(4)
and the corresponding pdf as:

g(z) =
αβ2θ

1 + β

(
1 + zα

z2α+1

)
e
−θβ
zα

[
1 +

β

1 + β

1

zα

]θ−1
; (5)

z > 0 , (α, β, θ) > 0

where (α, β, θ) are the parameters of the distribution, β being
scale while as α, θ are the shape parameters.

The aim of this article is to obtain a more flexible model that
exhibits both monotone and non-monotone behavior and thus
motivates us to apply single model for two distinct behaviors

∗Corresponding Author
DOI: 10.37398/JSR.2021.650136



Journal of Scientific Research, Volume 64, Issue 2, 2020

of hazard rate. Adding a parameter θ to GILD adds more
flexibility to the new distribution that competes well with
other existing lifetime models. The rest of article is organized
as follows: Reliability measures, moments, Renyi entropy,
distribution of order statistics and stochastic ordering are
presented in section II, III,IV,V,VIrespectively. Measures such
as quantile function is given in section VII. The method of
MLE has been discussed in section VIII. Section IX consists a
simulation study to compare the performance of ML estimators
followed by data analysis in section X. The article is concluded
in section XI.

II. RELIABILITY MEASURES

The survival function of Z is obtained as:

S(z) = 1−
[(

1 +
β

1 + β

1

zα

)
e
−β
zα

]θ
, (6)

and the corresponding hazard function as:

h(z) =

αβ2θ
1+β

(
1+zα

z2α+1

)
e
−θβ
zα

[
1 + β

1+β
1
zα

]θ−1
1−

[(
1 + β

1+β
1
zα

)
e
−β
zα

]θ , z > 0.

(7)
Further the Reverse Hazard Rate (RHR) of Z is readily

obtained as:

λ(z) =

αβ2θ
1+β

(
1+zα

z2α+1

)
e
−θβ
zα

[
1 + β

1+β
1
zα

]θ−1
[(

1 + β
1+β

1
zα

)
e
−β
zα

]θ , z > 0.

(8)
The plot of density function, survival function, hazard rate and
RHR for different values of parameters are displayed in Figure
1-4.
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Fig. 1: Density plot of GIPLD(α, β, θ)
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Fig. 2: Hazard rate for GIPLD(α, β, θ)
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Fig. 3: Survival function of GIPLD(α, β, θ)

III. MOMENTS

Moments play a very important role in probability distri-
butions. Moments are the constants of a population and these
constants help in deciding the characteristics of the population
and on the basis of these characteristics a population is
discussed.

Theorem 1: Let Z be a random variable having pdf (5), then
the rth raw moment of Z is

µ
′

r = E(Zr) = (βθ)
r
α

∞∑
i=0

(
θ − 1

i

)
1

(θ(β + 1))i+1(
i+ 1− r

α
+ θβ

)
Γ
(
i+ 1− r

α

)
.
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Fig. 4: Reverse hazard rate of GIPLD(α, β, θ)

Proof: The rth raw moment of Z is given by:

E(Zr) =

∫ ∞
0

zrgθ(z)dz

=
αβ2θ

1 + β

∫ ∞
0

zr
(

1 + za

z2α+1

)
e
−βθ
zα

[
1 +

β

1 + β

1

zα

]θ−1
dz

(9)

Using the binomial expansion,[
1 +

β

1 + β

1

zα

]θ−1
=

∞∑
i=0

(
θ − 1

i

)(
β

1 + β

1

zα

)i
.

we get,

E(Zr) =
αβ2θ

1 + β

∞∑
i=0

(
θ − 1

i

)(
β

1 + β

)i [∫ ∞
0

1

zα(2+i)−r+1

e
−βθ
zα dz +

∫ ∞
0

1

zα(i+1)−r+1
e
−βθ
zα dz

]
(10)

Let t = zα and using the definition of inverse gamma
distribution (10) reduces to

E(Zr) =
β2θ

1 + β

∞∑
i=0

(
θ − 1

i

)(
β

1 + β

)i [Γ(2 + i− r
α )

(θβ)2+i−
r
α

+
Γ(i+ 1− r

α )

(θβ)i+1− r
α

]
Therefore,

µ
′

r = (βθ)
r
α

∞∑
i=0

(
θ − 1

i

)
1

(θ(β + 1))i+1

(
i+ 1− r

α
+ θβ

)
Γ
(
i+ 1− r

α

)
(11)

For rth moment to exist, the constraint α > r must be satisfied.
Note that for θ = 1, (11) reduces to rth moment of GILD.

IV. RENYI ENTROPY

Entropies quantify the diversity, uncertainty, or randomness
of a system. For a given probability distribution, Renyi entropy
is given by:

e(γ) =
1

1− γ
log

[∫
gγ(z)dz

]
where γ > 0 and γ 6= 1

e(γ) =
1

1− γ
log

[∫ ∞
0

αβ2θ

1 + β

(
1 + zα

z2α+1

)
e−

βθ
zα

(
1 +

β

1 + β

1

zα

)θ−1
dz

]γ
.

e(γ) =
1

1− γ
log

(
αβ2γ

1 + β

)γ ∞∑
i=0

(
γθ − γ
i

)(
β

1 + β

)i ∞∑
j=0

(
γ

j

)
∫ ∞
0

e−
γβα
zα

1

zα(i+j+γ)+γ
dz

(12)

After simplification, (12) becomes,

e(γ) =
1

1− γ
log

(
αγ−1β2γθγ

(1 + β)γ

) ∞∑
i=0

∞∑
j=0

(
γθ − γ
i

)(
γ

j

)(
β

1 + β

)i
Γ
(
i+ j + γ + γ−1

α

)
(θβγ)i+j+γ+

γ−1
α

V. DISTRIBUTION OF ORDER STATISTIC

The pdf of kth order statistic of Z is

gk(z) =
n!g(z)

(k − 1)!(n− k)!
(G(z))k−1(1−G(z))n−k. (13)

where g(z) and G(z) denotes the pdf and cdf respectively.

Using (1− z)n =
∑∞
i=0

(
n
i

)
(−1)i(z)i in (13), we get

gk(z) =
n!g(z)

(k − 1)!(n− k)!

∞∑
i=0

(
n− k
i

)
(−1)i(G(z))i+k−1g(z).

gk(z) =
n!

(k − 1)!(n− k)!

∞∑
i=0

(−1)i
(
n− k
i

)
αβ2θ

1 + β

(
1 + zα

z2α+1

)

e−
θβ
zα

(
1 +

β

1 + β

1

zα

)θi+θk−1
.

Therefore,

gk(z) =
αθβj+2n!

(1 + β)j+1(k − 1)!(n− k)!

∞∑
i=0

∞∑
j=0

(−1)i
(
n− k
i

)
(
θi+ θk − 1

j

)(
1 + zα

z(j+2)α+1

)
e−

θβ
zα

(14)
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VI. STOCHASTIC ORDERING

Stochastic ordering of a continuous random variable is
an important tool for judging the comparative behavior. A
random variable Z is said to be greater than Y in the:
(a) Stochastic order (Y ≤st Z) if GZ(z) ≤ G

Y
(z)∀z

(b) Hazard rate order (Y ≤hr Z) if hZ(z) ≤ hY (z)∀z
(c) Mean residual order (Y ≤mlr Z) if mZ(z) ≤ mY (z)∀z
(d) Likelihood ratio order (Y ≤lr Z) if gZ(z)

gY (z) is an increasing
function of z.

The following results by Shaked and Shantikumar (1994)
are well known:

Z ≤lr Y ⇒ Z ≤hr Y ⇒ Z ≤mrl Y
⇓

Z ≤st Y

The following theorem shows that GIPLD is ordered with
respect to ”likelihood ratio” ordering.

Theorem 2: Let Y ∼ GIPLD(α1, β1, θ1) and Z ∼
GIPLD(α2, β2, θ2). .If β1 = β2 and θ2 ≥ θ1 (or if β2 ≥ β1
and θ1 = θ2 ) then (Y ≤lr Z) ∀ z.

Proof:
We have

gZ(z)

gY (z)
=
α2β

2
2θ2(1 + β1)

α1β2
1θ1(1 + β2)

(
1 + zα2

1 + zα1

)(
z2α1+1

zα2+1

)

exp−( θ2β2zα2 −
θ1β1
zα1 ).


(

1 + β2

1+β2

1
zα2

)θ2−1
(

1 + β1

1+β1

1
zα1

)θ1−1
 .

∂

∂z
ln
gZ(z)

gY (z)
=

1

1 + zα2 −
1

1 + zα1
+

1

z2α2+1
− 1

z2α1+1
+

θ2β2α2

z2α2+1
− θ1β1α1

z2α1+1
− α2β2(θ2 − 1)

(1 + β2)zα2+1

1(
1 + β2

1+β2zα2

)
+
α1β1(θ1 − 1)

(1 + β1)zα1+1

1(
1 + β1

1+β1zα1

) .
(15)

Setting α1 = α2

Case 1: for β1 = β2 = β and θ2 ≥ θ1, d
dz

(
ln gZ(z)
gY (z)

)
is obtained as an increasing function of z.
Case 2: θ1 = θ2 = θ and β2 ≥ β1, d

dz

(
ln gZ(z)
gY (z)

)
is obtained

as an increasing function of z.

This implies that Y ≤lr Z ∀ z.Hence Y ≤hr Z ,
Y ≤mrl Z and Y ≤st Z.

VII. QUANTILE FUNCTION

Theorem 3: Let Z follows (5), then the quantile function of
Z is

Q(u) =

[
−1− 1

β
− 1

β
W−1

(
−u 1

θ (1 + β)e−(1+β)
)]− 1

α

.

where u ∈ (0, 1) and W−1 denote the negative branch of
Lambert W function.

Proof: The quantile function denoted by Q(u) is the root
of equation[(

1 +
β

1 + β

1

Q(u)α

)
e
−β

Q(u)α

]θ
= u ; 0 < u < 1 (16)

Multiplying (16) by e−1−β we get,

−
[
1 + β +

β

Q(u)α

]
e−(1+β+ β

Q(u)α ) = −(1 + β)u
1
θ e−(1+β).

Using the Lambert W function which is the solution of the
equation W (z)eW (z) = z, where z is a complex number, we
have

W
(
−u 1

θ e−(1+β)(1 + β)
)

= −
(

1 + β +
β

Q(u)α

)
The negative Lambert W function of the real argument −u(1+
β)e1+β is

W−1

(
−u 1

θ e−(1+β)(1 + β)
)

= −
(

1 + β +
β

Q(u)α

)
.

which upon solving for Q(u) results in

Q(u) =

[
−1− 1

β
− 1

β
W−1

(
−u 1

θ (1 + β)e−(1+β)
)]− 1

α

.

(17)

which is the quantile function of GIPLD. Median of GIPLD
is evaluated using (17) as:

Q

(
1

2

)
=

[
−1− 1

β
− 1

β
W−1

(
−
(

1

2

) 1
θ

(1 + β)e−(1+β)

)]− 1
α

VIII. ESTIMATION

Let z1, .....zn be a random sample of size n from (5). The
log-likelihood function L(z,Θ) for a vector of parameters
Θ = (α, β, θ)T is given by

L(z,Θ) = n[logα+ 2 log β + log θ − log(1 + β)]+
n∑
i=1

log(1 + zαi )− (2α+ 1)

n∑
i=1

log(zi)− θβ

n∑
i=1

z−αi (θ − 1)

n∑
i=1

log

[
1 +

β

1 + β

1

zαi

]
.

The normal equations to estimate Θ = (α, β, θ) are :

∂

∂α
L(z,Θ) =

n

α
+

n∑
i=1

zαi logzi
1 + zαi

− 2

n∑
i=1

log(zi) + θβ

n∑
i=1

(z−αi )

log zi(θ − 1)

n∑
i=1

[
β

1+β (z−αi )log(zi)

1 + β
1+β

1
zi

α

]
= 0

∂

∂β
L(z,Θ) =

n(2 + β)

β(1 + β)
− θ

n∑
i=1

z−αi + (θ − 1)

n∑
i=1

[
1

1 + β
1+β

1
zαi

] [
1

zαi

1

(1 + β2)

]
= 0
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∂

∂θ
L(z,Θ) =

n

θ
− β

n∑
i=1

z−αi +

n∑
i=1

log

[
1 +

β

1 + β

1

zαi

]
= 0

The above non-linear system of equations cannot be solved
explicitly hence we use numerical iteration technique in order
to find the estimate of Θ. Since the maximum likelihood
estimates for Θ are not in closed form we use the large
sample behavior of maximum likelihood estimators to obtain
the confidence intervals for model parameters. The asymptotic
sampling distribution of Θ̂ is N [Θ,∆−1] where ∆ is the
observed Fisher information matrix given by:

∆ =


∂2L
∂α2

∂2L
∂α∂β

∂2L
∂α∂θ

∂2L
∂β∂α

∂2L
∂β2

∂2L
∂β∂θ

∂2L
∂θ∂α

∂2L
∂θ∂β

∂2L
∂θ2

 (18)

or

∆ =

 ̂V ar(α) ̂Cov(α, β) ̂Cov(α.θ)̂Cov(β, α) ̂V ar(β) ̂Cov(β, θ)̂Cov(θ, α) ̂Cov(θ, β) ̂V ar(θ)
 (19)

The second order derivatives for the parameters of GIPLD
exist and are derived as:

∂2L

∂α2
= − n

α2
+

n∑
i=1

zαi (logzi)
2

(1 + zαi )2
− θβ

n∑
i=1

z−αi logzi

+(θ − 1)

(
β

1 + β

) n∑
i=1

z−αi (logzi)
2(

1 + β
1+β

1
zαi

)2
∂2L

∂β2
=
−2n

β2
+

n

(1 + β)2
− (θ − 1)

(1 + β)4

n∑
i=1

[(
1

1 + β
1+β

1
zαi

)
1

zαi

]2
(3 + 2β(1 + zi))

∂2L

∂θ2
=
−n
θ2
.

∂2L

∂α∂θ
= β

n∑
i=1

(z−αi )logzi −
β

1 + β

n∑
i=1

[
z−αi logzi

1 + β
1+β

1
zαi

]
.

∂2L

∂β∂θ
= − β

(1 + β)3

n∑
i=1

(
1

zαi

)2

.

∂2L

∂β∂α
= θ

n∑
i=1

z−αi logzi −
(θ − 1)

(1 + β)2

n∑
i=1

z−αi logzi[
1 + β

1+β
1
zαi

]2 .
The solutions of the above equations yield the asymptotic
variance covariance of ML estimators for Θ. The asymptotic

confidence intervals for α, β, θ is: α̂ ± Zα
2

√
ˆV ar(α) , β̂ ±

Zα
2

√
ˆV ar(β) , θ̂ ± Zα

2

√
ˆV ar(θ)

TABLE II: Maximum likelihood estimates of different models

Model Estimates
α β θ

GIPLD 1.20 25.94 0.06
MW 0.96 0.001 0.27
PLD 0.79 0.58 -
GLD 0.74 - 0.36
ILD - 2.05 -

IX. SIMULATION STUDY

In this section, the performance of ML estimators for
different sample sizes (n = 25, 50, 100, 200, 300, 500) has
been studied. The inverse CDF technique has been employed
for data simulation using R software. The process was repeated
500 times for calculation of bias, variance and Mean Square
Error (MSE). From Table I, it can be shown that for two
parameter combinations of GIPLD, decreasing trend is being
observed in average bias, variance and MSE as the sample
size is increased. Hence, the performance of ML estimators is
quite well, consistent in case of GIPLD.

X. DATA ANALYSIS

In this section, real life data analysis is performed to
illustrate the applicability of GIPLD. The data set represents
the active repair times (hr) for an airborne communication
transceiver. This data has been widely used by various authors
and were initially used by Jorgensen (1982).

The proposed model has been compared with Modified
weibull distribution (MW), Power Lindley distribution (PLD),
Generalized Lindley distribution(GLD) and ILD using Akaike
information criterion(AIC) defined by −2logL+2q, corrected
Akaike’s information criterion(AICc) defined by AIC +
2q(q+1)
n−q−1 , Bayesian information criterion(BIC) defined by
−2logL+ qlog(n). The proposed model is checked for good-
ness of fit test using Kolmogrov-Smirnov statistic defined by
KS = Max|F0(X) − Fr(X)|, where F0(X) is observed
cummulative frequency and Fr(X) is the theoretical frequency
distribution. All the computations has been carried out using
R software.The pdfs of compared distributions are :

fMW (z) = (β + θαzα−1)e−βz−θz
α

.

fPLD(z) =
αβ2

β + 1
(1 + zα)zα−1e−βz

α

.

fGLD(z) =
θβ2

β + 1
(1 + z)

[
1−

(
1 +

βz

1 + β
e−βz

)]θ−1
e−βz.

The ML estimates along with standard error of parameters
are displayed in Table II. Tble III displays p-value along
with the above mentioned statistical values. It is quite ap-
parent form Table III that the proposed model has least
−logL,AIC,AICC,BIC values and therefore competes
well with other lifetime models.
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TABLE I: Simulation study of ML estimators for GIPLD

Parameter n
α = 0.1, β = 0.9, θ = 0.3 α = 0.4, β = 1.5, θ = 0.1

Bias variance MSE Bias Variance MSE

α

25

0.712085 0.101666 0.608731 0.684085 0.341057 0.80903

β 1.605035 0.371255 2.947391 1.186668 0.351011 1.759191

θ 0.091924 0.003196 0.011646 0.218817 0.001859 0.04974

α

50

0.584829 0.010782 0.352806 0.352148 0.016023 0.140031

β 1.256111 0.241674 1.819488 0.708452 0.573856 1.07576

θ 0.094421 0.002579 0.011495 0.207594 0.003101 0.046196

α

100

0.682481 0.0068 0.472581 0.32123 0.022468 0.125657

β 0.870167 0.084289 0.84148 0.582663 0.216566 0.556063

θ 0.077233 0.004805 0.01077 0.192033 0.005131 0.042007

α

200

0.581494 0.016392 0.354527 0.302592 0.007101 0.098663

β 0.83053 0.039215 0.728996 0.429972 0.128085 0.31296

θ 0.060925 0.00208 0.005791 0.176234 0.00627 0.037328

α

300

0.58948 0.002064 0.349551 0.279823 0.004912 0.083213

β 0.761678 0.065107 0.645261 0.254516 0.056483 0.121262

θ 0.036123 0.004829 0.006134 0.124068 0.003609 0.019002

α

500

0.456541 0.000728 0.209158 0.261378 0.002637 0.070955

β 0.644483 0.059861 0.475219 0.189692 0.053695 0.089679

θ 0.018788 0.00425 0.004603 0.102064 0.002812 0.013229

TABLE III: Comparison of GIPLD and other models

Model -LogL AIC AICC BIC K-S statistic p-value

GIPLD 89.45 184.91 185.57 189.97 0.094 0.86
MW 95.51 197.02 197.69 202.09 0.19 0.52
PLD 95.94 195.88 196.21 199.26 0.13 0.46
GLD 97.91 199.82 200.15 203.2 0.16 0.22
ILD 90.05 195.11 196.21 193.8 0.09 0.73

XI. CONCLUSION

In this study, a three parameter distribution named as
GIPLD has been proposed. Some statistical properties such
as reliability measures, moments, quantile, stochastic ordering,
Renyi entropy of the proposed distribution has been discussed.
The parameter estimation is approached by method of maxi-
mum likelihood estimation. Confidence intervals for the model
parameters have also been derived. Monte carlo simulations
were performed to investigate the performance of Maximum
likelihood. The results of the simulation revealed the bias,
MSE decreases as sample size is increased. Finally, application
of the proposed distribution were illustrated using real data set.
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