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Abstract: The pandemic COVID-19, starts at the end of the year 

2019, and rapidly blowout almost all over the sphere. There were 

more than 16.4 million people in the world pretentious by the 

disease up to the month of July 2020 and the miserable part was 

that we lost more than 0.6 million people in it. Still, an encouraging 

note for us was that most of the patients, more than 9.57 million 

people have recuperated from it. In the month of July 2020 India 

became the country with the third biggest amount of confirmed 

cases in the universe. In case of the recapture of COVID-19 

patients, Spatial factor may play a significant role. To be mindful of 

this, the research was done to study the recovery time of the 

COVID-19 patients of India in respect of their spatial locations by 

means of spatial frailty model under Bayesian mechanism. The 

study time of the research was from 1st March, 2020 to 25th April, 

2020. Arbitrarily selected a sample of 294 COVID-19 positive cases 

reported during the study period, in seven exceedingly pretentious 

states of India up to the month of March, 2020, were included in the 

study which were followed up to 25th April, 2020. Surprisingly the 

analysis showed that spatial effect actually plays an important role 

in the recovery time of the COVID-19 patients and it establishes the 

prominence of the application of frailty model in this circumstance. 

Besides this, the study also reveals the significant effect of the 

factors age and gender on their respective recovery times  

Index Terms: COVID-19, Survival Analysis, Spatial Frailty model, 

Proportional Hazards model, Recovery time of patients. 

I. INTRODUCTION 

COVID‑19 pandemic, the most burning topic of today, affect 

almost every nation of the world. This current global pandemic is 

caused due to coronavirus disease 2019 (COVID‑19). The 

COVID-19 patients were first detected in the Wuhan City of China 
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in December 2019 (Hung et al., 2020). According to the reports of 

World Health Organization (WHO), it was declared as a “Public 

Health Emergency of International Concern” on 30 January 2020 

and a “Pandemic” on 11 March, 2020 by them. Up to the month of 

July 2020, the total reported cases of COVID-19 across the world 

was more than 16.4 million in more than 189 countries and 

territories which caused more than 654,000 deaths and more than 

9.57 million people have recovered from it (Johns Hopkins 

University, 2020). In India the first case of COVID-19 was 

reported on 30 January, 2020 which originated from China. At 

present India has the biggest number of confirmed cases in Asia 

(Hindustan Times, 29 May 2020) with 1.5 million (Ministry of 

Health and Family Welfare, 2020) people and has the third largest 

number of confirmed cases in the world (Kulkarni, 2020). Till 

now, among 1.4 million COVID-19 confirmed cases 0.99 million 

patients are being recovered from it and more than 33 thousand 

(Ministry of Health and Family Welfare, 2020) people lost their 

life due to this disease. According to a report of WHO-China Joint 

Mission (2019), a patient of COVID-19 takes on an average 2 

weeks to recover from it. A report of India Today revels that in 

India the COVID -19 patients usually takes 14 days to recover but 

in some special cases it is observed to be up to eight weeks (India 

Today, 4 April 2020). Nemati et al. (2020) performed a research on 

machine learning based survival analysis and discharge time 

likelihood prediction using clinical data of COVID-19 patients. 

Ruan et al.(2020) conduct a study on 150 patients from Wuhan 

City, China on Clinical predictors of mortality due to COVID-19. 

Pandey et al. (2020) proposed SEIR and Regression Model to 

predict COVID-19 outbreak in India. Gupta & Shankar (2020) 

worked on the estimation the number of COVID-19 infections in 

Indian hot-spots using fatality data. Chatterjee et al. (2020) 
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proposed a stochastic mathematical model for healthcare impact of 

COVID-19 epidemic in India. Barman et al. (2020) carried out a 

pilot study on COVID-19 pandemic and its recovery time of 

patients in India. However in this study and in any other studies so 

far our knowledge goes, no attempt has been made to estimate 

recovery time of COVID-19 patients using survival models with 

frailty. 

Frailty model, a different kind of model used in survival 

analysis, offers us to analyse the unobserved heterogeneity in to 

the usual survival models, which cannot be explain by covariates 

of the model. In frailty model, in addition to the covariates of the 

survival model, a random effect factor - frailty is used in it which 

modifies the hazard function of an individual, or of correlated 

individuals. The idea of frailty was familiarised by Greenwood and 

Yule (1920) and the name “frailty” was introduced by Vaupel et al. 

(1979) and it was endorsed by Clayton(1978). Spatial factor plays 

a significant role in survival modeling due to the differences in 

socioeconomic status, access to health care, pollution, population 

density, weather conditions etc. In case of spatial frailty model, it 

is assumed that the random effects associated with the people of 

different geographical location are same or they share the same 

frailty. Henderson et al.(2002), Kneib(2006), Li & Lin(2006), 

Banerjee & Day (2005), Zhou et al.(2015) are some examples of 

application of Spatial frailty models of spatially correlated patients 

of different field like leukemia, childhood mortality, asthma, breast 

cancer etc. 

Keeping all these points in mind, to analyse the recovery time of 

the COVID-19 patients of India a study was conducted among a 

group of patients from seven states of India, where highest 

numbers of positive cases are observed up to the month of March, 

2020 using Spatial Survival model performed under Bayesian 

mechanism. The outcome of the analysis along with methodology 

adopted has been presented in this paper.  

II. MATERIALS AND METHODS: 

The time span of the study is from the first March of 2020 to 

the twenty-fifth April of 2020. The study subjects of confirmed 

COVID-19 cases (data source- https://www.kaggle.com/) were 

taken from -seven states of India- Maharashtra, Delhi, Tamil 

Nadu, Uttar Pradesh, Karnataka, Kerala and Telangana. These 

seven states have high positive Covid-19 cases during the period 

of our study. The study comprised of all the positive hospitalized 

cases in the seven states of India within March 1, 2020 to March 

31, 2020. These cases were followed up to 25th April, 2020. 

During the period of follow-up, inclusion of new patients was 

restricted. A total number of 1090 COVID-19 positive patients 

were diagnosed in the different hospitals of these seven states of 

India. With the population size of 1090, using sample size 

determination formula for finite population  (Yamane, 1967), the 

sample size for the study perched at 294 samples of Covid-19 

positive patients. Simple random sampling is used to select 294 

covid-19 patients from the population using MS-Excel. Age and 

sex of the patients are also collected from the same data source. 

The recovery time (in days) is the time between day of 

hospitalization and the day of recovery. The patients were 

contemplated as censored if he/she died or remain 

hospitalization after 25th April, 2020. 

In this study spatial frailty model is used to analyse the recovery 

times of COVID-19 patients of India. To know the effectiveness of 

the spatial effect on the COVID-19 patients and for making a 

comparison we also fit the same survival model without the frailty 

term. In case of spatial frailty models it was assumed that the 

frailty factor associated with an individual was different with 

respect to different geographical locations. Let us consider a right 

censored survival data (tij, δij ), i=1,2,…,n ; j=1,2,…,m and assume 

that the censoring is non-informative. Let δij denotes the indicator 

variable taking value 1 if we get the event  of interest for the jth 

subject (j=1,2,…,m) of the ith group (i=1,2,…,n) and value 0 

otherwise. Hence tij is a survival time if δij=1 and it is a censoring 

time if δij=0. Let xij be the covariate for each subject. Hence the 

triplet (tij,δij, xij ) is observed for all i and j. Let (Y, X) denotes the 

collection of all such triplet ( tij, δij, xij). The vector of unobserved 

frailty zi’s, denoted by Z, is called the augmented data and the 

triplet (Z,Y,X) is called the complete data. If hij(t) and Sij(t) be the 

hazard function and survival function of the jth subject in the ith  

group then the complete data likelihood for a multivariate frailty 

model is given by, 

1 1

( , , ) [ ( )] ( )ij

n m

ij ij

i j

L Z Y X h t S t


= =

=
 (2.1) 

   Where Z is the random variable known as frailty which varies 

over the population and it is unobservable. Zi is the frailty variable 

for the ith group of individuals. In this present study the groups will 

be different states. Given the unobserved frailty Zi, tij’s are 

independent. 

   Proportional Hazards (PH) Frailty models are the extensions of 

the population hazards model which is best known as the Cox 

model (Cox, 1972) a widely pursued model in survival analysis. 

According to Cox the hazard rate of an individual is given by, 
/

0( , ) ( ) Xh t X h t e=
   

 (2.2) 

   Where 0 ( )h t denotes the baseline hazard function, assumed to 

be unique for all individuals in the study population. X is the vector 

of observed covariates and β is the respective vector of regression 

parameters to be estimated. 

   PH frailty model extends the Cox model such that the hazard of 

an individual depends in addition on an unobservable random 

variable Z, which acts multiplicatively on the baseline hazard 

function 0 ( )h t . Introducing an additive frailty term Z for each 

individual in the exponent of the hazard function as follows, 
/

0( , , ) ( ) X Zh t Z X h t e +=
  

 (2.3) 
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   Here Z is the random variable varying over the population and it 

is unobservable. The corresponding survival function and the 

density is given by, 
/

0( , , ) ( )
X ZeS t Z X S t

 +

=
  

 (2.4) 

/ /

0

1

0    (( , , )   (  ) )  
X ZX Z ee S t tf t Z X f

 + −+=
 

 (2.5) 

   Where S0(t) and f0(t) are the baseline survival function and 

baseline density function assumed to be unique for all individuals 

in the study population. 

   PH frailty model is the most popular type of frailty model. This 

model was first introduced by Clayton (1978) and Vaupel et 

al.(1979). Li and Ryan (2002), Banerjee et al.(2005), Diva et al. 

(2008), Zhou et al.(2015) and many others use the proportional 

hazards frailty model in case of Spatially correlated survival data 

using different non-parametric frailty prior and different 

parametric and semiparametric baseline hazard function. In this 

study we consider a Log-logistic distribution with parameter υ and 

k for modeling the baseline hazard function. The complete data 

likelihood for the multivariate Proportional Hazards Model using 

Log-logistic Hazard with and without frailty is given by equation 

(2.6) and (2.7) 

/ /
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   Following Zhou et al. (2017) for the frailty parameter here we 

consider an independent Normal prior density, Zi ~ N (0, τ2), for 

i=1,2,…,n. Considering appropriateness of gamma distribution as a 

conjugate prior in Bayesian statistics here a gamma prior is 

considered for τ i.e, 
2 ~ ( , )Gamma a b  −

. Following Sahu et 

al.(1997), Sahu and Dey (2004), Zhou et al. (2017) a normal prior 

for the regression parameters are considered here which is given by

~ (0, )N m . For the hyper parameters of the baseline hazard 

function a gamma prior is assumed here due to its simplicity and 

flexibility as used by Sahu et al. (1997). In case of Log-logistic 

baseline hazard it is assumed that υ ~ Gamma(ρ,ρ) and 

k~Gamma(a,b).The joint posterior distributions for all the 

parameters of the models are given by, 
2
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 (2.9) 

  (.) be the respective prior distributions. 

   To get the data likelihood of the various parameters given in 

equation (2.8) and (2.9) we have to integrate out the Zi’s with the 

specified independent Normal prior density. Here we use Markov 

chain Monte Carlo (MCMC) algorithms like Metropolis-Hastings 

algorithm (Hastings, 1970) and Gibbs sampling (Geman and 

Geman, 1984) to generate samples from the appropriate marginal 

posterior distributions. 

   A residual plot of Cox and Snell (1968) is used here for model 

diagnostics.  If the model provides a good fit to the data we expect 

a straight line through the origin with slop 1. In this study to 

compare the fitted models we use two criteria, deviance 

information criteria (DIC) (Spiegelhalter et al., 2002) and the log 

pseudo marginal likelihood (LPML) (Geisser and Eddy,1979). 

Generally smaller DIC value shows good model fitting and large 

value of LPML indicates better predictive performance of the 

model. If the frailty model obtained to be better as compared to the 

other, it will establish the presence of spatial effect on the data. 

III. RESULTS: 

In this study a random sample of 294 COVID-19 positive 

individuals are taken from seven highly affected states of India. 

The patients are followed up to 25th April, 2020. Using this data 

set we have done the Bayesian Analysis of the two survival 

models mentioned in section 2 with the help of the R Software. 

Here we consider recovery times of the patients as the survival 

times and age and sex of the patients as the covariates of the 

models. Besides this to observe the spatial effect on the patients, 

different states are considered as different geographical 

locations. The patients of each state constitute a cluster and they 

share the same spatial frailty. In case of
/

iX Z
e
 +

, 

/( , )Age Sex  = and we consider Sexij =1, if the jth patient in the 

ith state is a male and 0 otherwise. Where i=1,2,…,7 and  

j=1,2,…,42. The MCMC is done using adaptive Metropoli 

samplers (Haario et al., 2001). The following hyper- parameter 

initial values were used in the simulation process.  Here we 

consider τ= 1 and aτ =bτ=.001, ρ=0.001, a=0.01, b=0.01 and 

m=1. From the above analysis we have found the posterior 

inferences about the parameters of the model. Here the Table 3.1 

and Table 3.2 shows the posterior mean, median, standard 

deviation and 95% credible intervals for the regression 

Coefficients and the frailty variance for the models. Fig 3.1 and 

Fig 3.2 shows the trace plots of the parameters for the two fitted 

models. For the two fitted models the Cox-Snell plots are given 

in Fig 3.3 and Fig 3.4. For the two fitted models the obtained 

LPML and DIC are given in table 3.3.   
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Table 3.1: Posterior Inference of Regression Coefficients 
      Models Regres 

-sion 

Coeffi- 

cients 

       Mean Median      Standard 

     Deviation 

95% 

CI- 

Low 

95% 

CI- 

 Upper 

PH  

Frailty  

Model 

 

βAge 
0.13492 0.127179 0.199196 -0.244719 0.536585 

βSex -0.0017 -0.001646 0.005607 -0.012573 0.008886 

PH 

Model 

without 

frailty 

βAge 
0.13318 0.131906 0.191888 -0.244529 0.500415 

βSex -0.0018 -0.001810 0.005430 -0.012060 0.009080 

 

Table 3.2: Posterior Inference of Frailty Variance 

Models 

 
Mean Median         Standard 

         Deviation 

95% 

        CI- Low 

95% 

      CI- Upper 

P H Frailty 

 Model 

0.129010   0.056849   0.234131   0.005632   0.711479 

 

Table 3.3: LPML and DIC for different models 

Models Log Pseudo Marginal 

Likelihood: LPML 

Deviance Information 

Criterion: DIC 

PH Frailty Model -501.1691 1002.731 

PH Model 

 without frailty 

-508.8872 1010.656 

 

 

    Fig 3.1: Trace plots of the Regression coefficients and Frailty variance for 

the frailty model 

 

Fig 3.2: Trace plots of the Regression coefficients for the model without 

frailty 

 

Fig 3.3: Cox and Snell plot for the frailty model 

 

Fig 3.4: Cox and Snell plot for the model without frailty 

 

IV. DISCUSSION: 

   The table 3.1 depicts that the recovery times of male patients 

is lower than the females. The factor age has also effect on the 

recovery times of the patients. The study indicates that when 

age increases the recovery time of a patient also increases. 

Voinsky et al. (2020) in their study observed that the recovery 

time of the patients aged more than 30 years had significantly 

longer recovery periods compared with younger patients. 

Though their result is statistically significant, the differences 

are very small. Yet, they conclude that younger individuals 

were less likely to have severe COVID-19 symptoms and take 

less time to recover from it. According to a study conducted in 

Singapore by Mollazehi et al. (2020) younger patients 

recovered faster compared to elderly patients.  Lithander et 

al.(2020) observed an association between age and prognosis in 

COVID-19.The estimate of the frailty variance in the present 

study, in table 3.2 indicates presence of heterogeneity in the 

population of patients. It is observed that the recovery times of 

patients are different according to their geographical locations. 
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That is the area or state also has effect on the recovery times of 

the patients.  The recovery time varies from state to state. In 

other words it also establishes impact of environmental factor 

on recovery time of COVID-19 patients. From the Cox-Snell 

plots of both the models in Fig 3.3 and Fig 3.4 it can be seen 

that the data fits the proposed models quite good and fit of the 

frailty model is better than the other. From the table 3.3 it is 

observed that the Proportional Hazards frailty Model using 

Log-logistic hazard has larger LPML and smaller DIC as 

compared to the other model. So it is clear that the fit of the 

frailty model is better than the model without the frailty term. 

Which indicates the presence of spatial effect on the COVID-19 

patients in different states of India. The study of Mollazehi et 

al. (2020) also revealed that in Singapore, the Singaporean 

patients cure more quickly than non-Singaporean patients. 

    Besides these some other factors may also have some effect 

on the recovery time of the patients like health status, mental 

strength of the patients, presence of some other disease like 

diabetes, hypertension, respiratory disease, heart disease etc. 

may also affect the recovery time of COVID-19 patients. But 

due to unavailability of such kind of detail information about 

the patients, we are unable to study these factors. So there is 

scope for extension of this study considering such kind of 

valuable factors.   

 CONCLUSION 

    In this paper, the recovery times of the COVID-19 patients of 

India are studied with respect to the factors geographical 

locations, age and sex using spatial proportional hazard frailty 

model with Log-logistic hazard. For making a comparative 

analysis we have also fitted the same Proportional Hazards 

model without the frailty term.  A random sample of 294 Covid-

19 positive cases reported during the month of March, 2020, in 

seven highly affected states of India, viz, Maharashtra, Delhi, 

Tamil Nadu, Uttar Pradesh, Karnataka, Kerala and Telangana 

are considered here. The analysis is performed under Bayesian 

Mechanism with the help of R software. From the analysis it is 

observed that the recovery times of male patients are lower as 

compared to the females. Again, the factor age has effect on the 

recovery times of the patients. It is observed that the recovery 

times of patients are different according to their geographical 

locations. The model diagnostics has shown quite good fit of the 

spatial frailty model. That is spatial factors also play role on the 

recovery time of the patients. Due to inaccessibility of data, in 

the present study some important facts about the patients, which 

may have effect on recovery time of the patients, are not 

considered here. So there is a future scope for extension of this 

study incorporating more parameters related to the COVID-19 

patients. 
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