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Abstract—Attitude control refers to controlling the rotational
motion of an Unmanned Aerial Vehicle (UAV) about its axes. Any
movement requires energy consumption and UAV batteries store
limited energy. We propose the use of reinforcement learning
to optimise energy usage in UAVs. We use Proximal Policy
Optimization (PPO) algorithm to train the model, modifying the
existing algorithm to incorporate sigmoid activation function.
We have introduced Ornstein Uhlenbeck noise to the policy
function with the intention of adding the unpredictability found in
real world environments. We have designed the reward function
of our algorithm such that the quadcopter aims to change its
existing angular velocity to achieve the target angular velocity.
While this attitude control takes place, energy is spent due to
motor/propeller revolutions. Qur reward function minimizes the
rapid change in motor speeds which causes fast battery depletion,
thus saving energy and enhancing UAV flight time.

Index Terms—attitude control, unmanned aerial vehicles, re-
inforcement learning, quadcopters, energy efficiency, proximal
policy optimization

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), also known as drones,
are getting popular day by day. Till some time back, UAVs
used to be a field attracting man’s imagination and in the
hands of the chosen few, who used it for hobby or passion.
Continuous research in the academia and the industry has
given great impetus to this device’s use in a plethora of tasks.
Today, we find UAVs being used in surveillance, photography,
deliveries, disaster relief, exploration of mineral ores, building
construction, recreational uses, etc. UAVs can be broadly
classified into quadrotors or quadcopters and fixed wing.
Quadcopters have a number of advantages like hovering capa-
bility, no take-off and landing space required, etc. However,
they have a lower flight duration capability as compared to
fixed wing UAVs owing to lesser battery carrying capacities.
Thus, there is a need to optimally utilize their available energy.
Since, the utility of quadcopters is known to be much greater
than that of fixed wing UAVs, our study will also be focussed
on quadcopters. A UAV has six degrees of freedom, three
rotational (which define the three axis about which a UAV can
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rotate) and three translational (defining the motion of the UAV
in the three dimensional space from one point to another). The
UAV’s movement is the most important source of its power
consumption. The UAV movement can be either dictated by a
human operator or it can be preprogrammed. There is another
option where we use the power of artificial intelligence to
allow the UAV decide on its own, its movements. This is
particularly lucrative given that it is not always possible to
consider the impact of external factors while pre-programming
the UAV’s path and orientation. Also, having a human operator
is an expensive option.

Reinforcement learning, a branch of artificial intelligence,
allows objects to learn from experience. There is ongoing
research dedicated to finding areas where reinforcement learn-
ing can be used. We propose the application of reinforcement
learning to minimize the energy consumption in the attitude
control of quadcopter UAVs.

A. What is attitude control in UAVs

Attitude is the angle at which the UAV flies, relative to
the ground. It defines the UAVs orientation to the horizontal
plane. The UAV has three axes about which it can rotate
- roll, pitch and yaw. Roll is the UAV’s rotation about the
axis passing through its longitude. This axis runs from the
head to tail of the UAV. Pitch implies the UAV’s rotation
about the lateral axis. It leads to the nose up and down
movement. The yaw rotation is the UAV’s rotation clockwise
or anticlockwise while it remains level to the ground (Refer
to Fig. 1). Attitude control refers to controlling this rotational
motion by regulating the rotations about the roll, pitch, yaw
axes.

Four armed quadcopters may have a + orientation or an X
orientation Fig. 2. However, the X orientation has been found
to be more useful as the quadcopter arm does not come in the
way of the camera. For our study, we shall be taking up the
X oriented quadcopter UAV. A UAV’s rotational motion is
governed by the difference in rotational speed of its motors.
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Fig. 1. Roll, Pitch, Yaw in a Quadcopter (Bou-Ammar, Voos, & Ertel, 2010,
pp. 2130-2135)
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Fig. 2. Quadcopter orientations - Left (+ orientation) and Right (X orienta-
tion). Arrow indicates direction of flight

Performing attitude changes simply requires increasing or
decreasing the speed of rotations of the motors in a set
pattern, which are as follows:

Pitch Down (Forward flight): Increase speed of motors 3 and
4 while reduce speed of motors 1 and 2. Fig. 3(a)

Pitch Up (Backward flight): Increase speed of motors 1 and
2 while reduce speed of motors 3 and 4. Fig. 3(b)

Roll Left (Turn left flight): Increase speed of motors 2 and 3
while reduce speed of motors 1 and 4. Fig. 3(c)

Roll Right (Turn right flight): Increase speed of motors 1 and
4 while reduce speed of motors 2 and 3. Fig. 3(d)

Yaw Left (Turn left): Increase speed of motors 2 and 4 while
reduce speed of motors 1 and 3. Fig. 3(e)

Yaw Right (Turn right): Increase speed of motors 1 and 3
while reduce speed of motors 2 and 4. Fig. 3(f)

A quadcopter mainly consists of a flight controller, battery,
radio receiver and a set of Electronic Speed Controllers
(ESCs), motors and propellers for each of its four arms. The
flight controller includes an Inertial Measurement Unit (IMU),
GPS, etc. The IMU includes the Gyroscope, Accelerometer,

Institute of Science, BHU Varanasi, India

Journal of Scientific Research, Volume 65, Issue 3, 2021

N @ SN2 Sy 2

)
)

Q) @

(a) (b) (c)

W3, S 2 N

N\ @ O 4 O

(d) (e) (f)

&

Fig. 3. Changing the speed of motor rotates the quadcopter about the desired
axis. (Dark circles indicate increased speed of motor)

Magnetometer, etc. Our study will be focussing on the Gy-
roscope only as it detects the rotational attributes roll, pitch
and yaw. The Electronic Speed Controllers (ESCs) are used
to control the UAV’s attitude by varying the speed of the
propellers.

B. Energy efficiency in UAV attitude control

The only moving objects in a quadcopter are the motors
and propellers. The Electronic Speed Controllers (ESCs) pass
instructions received from the flight controller to drive the
motors which make the propellers work. Thus, in order to
make the UAV’s attitude control energy efficient, we need
to manage the instructions passed from the ESCs to their
respective motors. If the motors are driven at high revolutions
per minute or RPMs, the battery drainage would be fast. Also,
if there are high variations in the RPM values, energy gets
drawn from the batteries faster leading to faster drainage.
The ultimate aim is to increase UAV flying time, which can
be best obtained if the rate of battery depletion is reduced.
Since, the movable parts of the UAV are its major energy
guzzlers, we need to find strategies to minimize their energy
consumption. Hence, we propose to use reinforcement learning
as the technique to improve energy efficiency in UAV’s attitude
control.

C. Deep Reinforcement learning

Reinforcement learning is a branch where we have a prob-
lem and we have a number of possible solutions or ways to
handle that problem (Sutton & Barto, 2018). The purpose is
to select an action from the available options with the aim
to achieve the best result. The aim of reinforcement learning
is to create a mapping between situations and actions in
order to get the best reward. Deep reinforcement learning
marries the power of deep neural networks to understand the
world with the ability to act on that understanding. What
differentiates reinforcement learning from the other forms of
machine learning is that the system is not taught what output
to give, instead the system learns from experience. There is no
human supervision involved. It is a closed loop process, i.e. the
output of one step forms the basis of input of the next step.
Reinforcement learning finds application in problems where
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the entire problem is spread over multiple stages or steps and
sequential decision making is needed.

D. Our Contribution

Our contribution, in this research, can be broadly stated as:
1. We have modified the Proximal Policy Optimization (PPO)
algorithm taken from Open Al Baselines and added sigmoid
function as the activation function.
2. In order to introduce unpredictability in the environment,
we have added Ornstein Uhlenbeck noise into the system. This
provides the necessary unpredictability which is expected in
the real world.
3. With the aim to minimize energy depletion by way of
change of motor/propeller speeds, we have designed the re-
ward function of our PPO algorithm to minimize this change.
4. We train our system to achieve the target angular velocity
from the existing angular velocity while minimizing change
in ESC instructions passed to the motors.

II. RELATED WORK

Attitude control has been handled differently in different
papers. Some have taken attitude control as an isolated prob-
lem while some have clubbed it with navigation control. We
shall be first discussing some of the papers which target the
attitude control problem as a standalone issue.

Aggregated Multi Reinforcement Learning Systems (Jiang &
Kamel, 2007, pp. 41-46) test pitch control of quadcopter on
multiple reinforcement learning algorithms. Weight learning
has been treated separately, with Weighted Borda Count Ag-
gregation giving the best performance. The impact of wind
and other external factors are considered in Constrained Fi-
nite Time Optimal Control Scheme (Alexis, Nikolakopoulos
& Tzes, 2010, pp. 4451-4455). They assume a rigid and
symmetrical quadcopter structure. It is also assumed that drag
and forces of thrust have proportional impact on the propeller
speed. Pioneering work has been done by Hwangbo et al.
(2017, pp. 2096-2103) where raw sensory data was mapped
to the motor velocity. They have implemented their approach
in the real world. Using the deterministic on-policy approach,
they have used two networks - a value network and a policy
network.Training was done model free. They have incorpo-
rated waypoint tracking, recovery tests and improved on the
tracking error. Deep Model Based Reinforcement Learning in
(Lambert, Drew, Yaconelli, Levine, Calandra & Pister, 2019,
pp- 4224-4230) proposes to counter system based and dynamic
limitations using techniques like firmware changes, system
design and model adaptations. Their design is portable to
different types of quadcopters.

We also came across multiple works of literature where
attitude control had been treated along with navigation control
of quadcopters. Attitude control has been presented as the
inner loop while navigation control forms the outer loop of the
entire problem. Abbeel et al. (2006, pp. 1-8) propose a hybrid
algorithm where the model is approximate. They reason that
as it is, continuous control tasks need model free algorithms.
Their approach is to check the policy evaluations on real world
scenarios along with using the approximation model to fine
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tune the local changes. In (Bou-Ammar, Voos & Ertel, 2010,
pp. 2130-2135), feedback linearization is used along with
decoupling to achieve attitude control. Santos et al. (2012, pp.
1-16) propose Finite Action-set Learning Automata algorithm
which has two hosts. One host is used to perform control
loops while the other performs the robot model. The paper
by (Lou & Guo, 2016) creates a link between attitude control
and linear acceleration with the help of Proportional Derivative
equation. The outer loop navigation controller tracks attitude
control using backstepping technique that is command filtered.
TEXPLORE, by (Imanberdiyev, Fu, Kayacan & Chen, 2016,
pp- 1-6) uses target exploration. Decision trees are used to
aid in learning and multiple learned models are called forests.
In Vision-Based Autonomous Multirotor Landing (Rodriguez-
Ramos, Sampedro, Bavle, Moreno & Campoy, 2018, pp. 1010-
1017), the authors use RGB cameras along with Inertial
Measurement Units and sensors, to achieve attitude control.
It uses a reinforcement learning algorithm Deep Deterministic
Policy Gradients (DDPG). A feedback controller, that uses a
quarternion, to describe euler angles and attitude errors has
been used in the integrated reinforcement learning algorithm
in (Li, Durdevic & Yang, 2019, pp. 55-60) A neural network
called Cerebellar Model Articulation Controller is the basis
of work done in (Nie, Zheng & Zhu, 2019). The pitch angle
is expressed as a function of the velocity of the UAV. Shin
et al. (2019, p. 5571), suggest using two joint convolutional
neural networks, thus creating a duelling architecture. They
have tested their work on AirSim’s Woodland package. Twin
Delayed Deep Deterministic Policy Gradients (TD3) in (Kon-
ing, 2020) adopts a two step approach where the quadcopter’s
inertial matrix is calculated using multiple point masses and
the weight of the centre. Thereafter, a physical model is
recreated using Matlab Simulink. The authors claim a 94
% success in achieving attitude control. Another interesting
proposal by Bekal et al. in (2020, p. 0898) suggests applying
DDPG algorithm for pitch control while PID controllers are
used for roll and yaw control. Bghn et al. (2019, pp. 523-533)
use Proximal Policy Optimization (PPO) on fixed wing UAV’s
attitude control. This paper treats yaw rate as a function of the
roll angle. The research work in (Zhou, Yin, Wang & Wang,
2014) performs a mathematical analysis of attitude control in
fixed wing UAVs by doing feedback linearization and dividing
the model into three separate channels for roll, pitch and yaw.
The following sections are organised as follows: In section
3, we discuss the preliminaries. Section 4 talks about our
proposed method. We discuss our experimental evaluation in
Section 5. In Section 6, we discuss our research along with the
scope of future work while Section 7 contains the conclusion.

III. PRELIMINARIES

In this section we provide an overview of all the ideas used
in our research as well as the explanation of the terms used.

A. Terms used in Deep Reinforcement Learning

Agent (Fig. 4): Tt consists of a neural network having one
input layer, one output layer and multiple hidden layers. Each
layer has multiple nodes called neurons and an activation
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Fig. 4. Agent environment interaction in Reinforcement learning (Amiri,
Mehrpouyan, Fridman, Mallik, Nallanathan & Matolak, 2018, pp. 1-7)

function. The agent works based on a reinforcement learning
algorithm (Sutton & Barto, 2018).

Action: The output of the agent defines the action and is
denoted by A, € A(S;) where (S;) is one of the states of the
environment(discussed next). The action is either an action
value function ¢,(s,a) or a state value function v, (s). The
value function is an estimate of how good an action is or how
good a state is. At each time step, the agent maps states to
the probabilities of selecting an action, known as the policy.
Policy: Tt is represented by 7; and 7;(a|s) means that A; = a
if S; = s. A policy may be:

e Deterministic: Used in environments where there is no
uncertainty, a deterministic policy maps states to actions.
m(8) = ay

e Stochastic: A stochastic policy gives a probability dis-
tribution over actions. It is used when the environment is
uncertain. m;(als) = P(a¢|st)

Environment: 1t is the world with which the agent interacts.
The action is sent by the agent to the environment. The
environment receives this and responds to it. The response is
sent back to the agent. In our case, the UAV is the environment.
State:  The condition of the environment is its state. The
environment returns its state to the agent.

Reward: The reward, by far the most critical part of any
reinforcement learning algorithm’s design, defines its goal. It
is a single number sent by the environment at each time step.
The agent aims to maximize this reward at the end of the
whole process. This reward depends on the agent’s action and
the environment’s current state.

The agent creates a model based on its representation of the
state and the reward. Reinforcement learning algorithms can
be divided into model based and model free algorithms.
Model based: As the agent learns the model of the world, it
constructs a model or an estimate of the model about how the
environment works. Once this is done, the agent is able to plan
into the future by predicting how the actions will change the
world. E.g. Chess, Go. They are extremely sample efficient.
Model free: The agent doesn’t create a model of the world.
Model free approach is of two kinds.

e Value based: Value based agents constantly update how
good is an action taken at a given state and use that
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model to take the optimal action. They don’t learn a
policy, they learn how good it is to be in a state and
use that information to pick the best one. These methods
are applicable for deterministic policies only.

e Policy based: They directly learn a policy function which
maps states to actions, i.e. we select the action without
using a value function. They can work on stochastic
policies also.

B. Discrete and continuous action spaces

Reinforcement learning has been found to deliver state of
the art results in problems like computer games, Go and
chess (Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare
& Petersen, 2015, pp. 529-533) (Mnih, Kavukcuoglu, Silver,
Graves, Antonoglou, Wierstra & Riedmiller, 2013) and (Silver,
Huang, Maddison, Guez, Sifre, Driessche & Dieleman, 2016,
pp- 484-489). The Deep Q Network (DQN) algorithm used for
such tasks performed in low dimensional and discrete action
spaces. However, we need algorithms that can work in the
high dimensional and continuous action spaces like the attitude
control problem. (Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa
& Wierstra, 2015) gave a landmark reinforcement learning
algorithm using policy gradient approach to solve continuous
tasks. Since then, many other reinforcement algorithms have
come up for solving complex tasks in continuous action
spaces.

C. Policy gradient

Policy gradient is used in on-policy approaches. It directly
optimizes the policy space such that we take those actions
that have a greater probability of giving better rewards. At the
same time, we decrease the chances of selecting a policy if
it gives a high negative reward. The policy network forms a
representation of the environment space and its output presents
a stochastic estimate of the probability of different actions.
The expected reward J(f) is the sum of probability of the
trajectory 7 multiplied by the corresponding rewards.

J(0) =Y _P(r;0)R(r) (1)

where 0 is the policy used to create the trajectory 7 where

T = (81,01, 52,02, .., S¢, at) 2)
We need to find a @ that gives the maximum reward.
max J(0) = Ingsz:P(T; O)R(T) 3)

If the environment is too complex that value based methods
like DQN cannot learn, policy gradient methods will still
work and learn a good policy because they learn the policy
directly. Policy gradient algorithms have faster convergence.
They are capable of learning stochastic policies which value
based methods cannot. They can also deal with continuous
action spaces in a much easier way. However, they are sam-
ple inefficient and can become highly unstable. They have
poor credit assignment for delayed rewards. As we progress
beyond Vanilla Policy Gradient techniques, we have reached
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on policy optimization processes like Trust Region Policy
Optimization(TRPO) and Proximal Policy Optimization(PPO).
The action one takes, influences the rest of the optimization
process. So, the action has to be taken very carefully and
specially avoid taking bad actions.

D. Role of IMU and ESC

In order to implement our proposal to solve the attitude con-
trol problem of quadcopters using deep reinforcement learning,
we have used GymFC (Koch, 2018), a flight controller envi-
ronment. Built upon the Open Al Gym environment’s API,
GymFC has an action space and an observation space. The
observation space defines the bounds of the environment’s
observations while the action space states the bounds of
the action input. Both, the action space and the observation
space belong to the continuous domain. Within the Inertial
Measurement Unit (IMU), there is a component called the
gyroscope which computes how fast the quadcopter is rotating
about the roll, pitch and yaw axis. This value, the angular
velocity of the quadrotor, is returned by the environment to
the agent and forms a part of its input. It is represented by
Qt) = [Qp(1), Qo (1), Ly (t)]. Qp(t), Qg(t) and Qy(¢) denote
the angular velocities about the roll, pitch and yaw axes
respectively, of the quadcopter. The other component returned
by the environment is the velocity of each of the four motors
computed and sent by their respective Electronic Speed Con-
trollers (ESCs), denoted by w(t) = [wo(t), w1 (t), wa(t), ws(t)]-
wo(t),wr(t),ws(t) and ws(t) is the velocity of each of the
four motors of the quadcopter measured in Revolutions per
Minute (RPM). The agent receives this value which forms the
environment’s current state, applies the reinforcement learning
algorithm and sends its response (action) in the form of
control signals to the aircraft’s actuators. The control signals
are in the form of Pulse Width Modulation (PWM) signals
a(t) = [ap(t), a1(t), as(t), as(t)] for each of the four motors
sent to the ESCs.

E. Neural Networks

The agent’s function of mapping a state to an action can
simply be expressed as a table where there are states on the y
axis and actions on the x axis. Each cell of the table denotes
the reward received. As we use the reinforcement learning
algorithm, we keep updating this table. However, any real life
problem cannot be represented in a single table as that would
result in an exceedingly large number of rows and columns in
the table. Our attitude control problem is spread across the
three dimensions as discussed in the previous section and
hence, the agent’s action cannot be represented in a table
- enter deep reinforcement learning. The deep part of the
reinforcement learning is the neural network. It consists of
an input layer, output layer and hidden layers, the constitution
of which depends on the reinforcement algorithm used. Neural
networks aggregate all the information received in the past to
the useful information that is pertinent to the task at hand. The
aim of reinforcement learning is to train the agent to act in
the real world using this information.
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Fig. 5. (a) A neuron - the building block of a neural network (b) A multilayer
neural network (Vieira, Pinaya & Mechelli, 2017)

F. Layers and activation function

A neural network consists of an input layer, an output layer
and at least one layer in between called the hidden layer (Fig.
5). Each layer consists of nodes which is the location where
computations take place. The node is designed on the concept
of the neurons of the human brain which trigger an action
when sufficient stimulus is received. The node multiplies
input data x; with a weight w;, that either increases or
decreases that input, thus allocating significance to each input
depending on the problem the algorithm is aiming to learn.
The sum of the products of input and weights Y . | z;w;
is further subjected to an activation function f(3 ., z;w;).
The activation function decides whether a signal is to pass
through the network and influence the final outcome. There
are multiple activation functions used in neural networks, for
example Tanh, Sigmoid, ReLU, etc.

G. Proximal Policy Optimization

As discussed earlier, working in the continuous action
domain requires policy based approaches. Algorithms like
Deep Deterministic Policy Gradients (DDPG) (Lillicrap, Hunt,
Pritzel, Heess, Erez, Tassa & Wierstra, 2015), Asynchronous
Advantage Actor Critic (A3C) (Mnih, Badia, Mirza, Graves,
Lillicrap, Harley & Kavukcuoglu, 2016, pp. 1928-1937),
Trust Region Policy Optimization(TRPO) (Schulman, Levine,
Abbeel, Jordan & Moritz, 2015, pp. 1889-1897), Proximal
Policy Optimization(PPO) (Schulman, Wolski, Dhariwal, Rad-
ford & Klimov, 2017), etc. have been proposed and shown
promising results. We surfed through a great deal of literature
(Such, Madhavan, Liu, Wang, Castro, Li & Lehman, 2018),
(Silver, Lever, Heess, Degris, Wierstra & Riedmiller, 2014),
(Henderson, Islam, Bachman, Pineau, Precup & Meger, 2018),
(Islam, Henderson, Gomrokchi & Precup, 2017) to zero down
on PPO as our preferred algorithm for handling attitude
control. The reason for selecting PPO for our problem is
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mainly because PPO has been reported to offer the best conver-
gence figures amongst all (Wang, Cai, Yang & Wang, 2019).
A3C requires high computational power (Gazori, Rahbari &
Nickray, 2019). DDPG is an off-policy technique, i.e. it figures
out the optimal policy irrespective of the agent’s actions. Its
exploration strategy is time consuming (Xu, Cao, Chen & Li,
2018), (Le, Vo, Kieu, Hwang, Rho & Baik, 2020) . TRPO’s
policy update process takes the policy too far from the current
policy, which PPO improves by restricting the policy update
(Schulman, Wolski, Dhariwal, Radford & Klimov, 2017).
Also, PPO’s objective function is very simple, which is critical
for our problem of improving energy efficiency in our process.
PPO algorithm (Schulman, Wolski, Dhariwal, Radford &
Klimov, 2017) defines policy gradient loss as the expectation
over the log of policy actions times the advantage function.

LFC(0) = Ey[log mg(as|s,) Ay] 4)

The advantage function is the estimate of the relative value
of the selected action. It is a measure of the action quality
relative to the average action. In other words, it denotes how
much better the current policy is. To calculate the advantage
function, we need the discounted rewards which provide the
baseline estimate.

Ay =8+ (P01 + o+ (N T 5 (5)

where 8 =11 + YV (st41) — V(st)

The discounted reward is the cumulative reward after the
completion of the episode sequence. The baseline estimate or
value function gives an estimate of the discounted return from
this point onwards. Thus, the advantage function provides an
estimate of how much better was the action taken based on
the expectation of what would normally happen depending
on the state the agent was in. When the advantage function
is a positive value, we increase the likelihood of taking that
action when that particular state is observed. If the advantage
function is negative, we reduce the probability of taking that
action when the similar state is observed. The problem is
that if we keep running gradient descent on a single batch
of collective experiences, we end up updating the parameters
so far out of the range, that we go far away from our initial
estimate and destroy our policy. The solution is to never move
too far away from the old policy. In order to make sure
the updated policy doesn’t move too far from the existing
policy, TRPO adds a Kullback-Leibler(KL) constraint. Thus,
we stay close to the region where we know everything works
fine. However, KL constraint adds an additional overhead to
the optimization process and leads to undesirable training
behaviour. Hence, there is a need to add this constraint directly
to the optimization objective. PPO does it as below:

LCLIP(H) = I@t[min(rt(H)At, cip(ri(0),1—¢€,  (6)

PPO uses actor critic approach. There are two neural networks,
an actor which is policy based and a critic which is value
based. The actor samples an action from a policy and the critic
measures how good the chosen action is. Thus, the algorithm
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Fig. 6. Plots of Sigmoid and Tanh activation functions (Bonaccorso, 2020)

adds a value function error term to the policy surrogate. Also,
an entropy bonus is added to provide sufficient exploration.

LEHIPRVERS(9) = By [LEHP (0) = er Ly 7 (8) +c2S[mo) (s:)]

(N

The whole aim of PPO to improve TRPO is to restrict the

policy update to be not too far from the current policy. PPO
has a very simple objective function unlike TRPO.

H. Noise

In order to apply reinforcement learning agents to real
life problems, it is important that the policies should gen-
eralize in newer environments. We have to avoid overfitting
of an agent’s policy to only certain training environments.
Regularization techniques like injecting noise into the system
are required (Igl, Ciosek, Li, Tschiatschek, Zhang, Devlin &
Hofmann, 2019, pp. 13978-13990). Noise induces a level of
unpredictability into the system that is expected from real life
scenarios. As minimizing energy consumption is our ultimate
criteria, we need to replicate the real world behaviour in the
simulation environment and then create a reward function to
optimize energy consumption and test if our algorithm returns
a better than baseline performance.

IV. PROPOSED PPO BASED METHOD

In order to improve the application of reinforcement learn-
ing so that it is applicable to real life problems, there are two
approaches:

1. Improve the algorithms so that they can create policies that
are transferable across all types of domains, including the real
world, i.e. train in simulation and then transfer that training
to the real world.

2. Improve the simulation in such a way that the gap between
simulation and the real world reduces to the extent that things
learnt in simulation are directly transferable to the real world.
We group our contribution into the following four sections:

A. Change in activation function

PPO uses tanh or hyperbolic tangent activation function in
its layers. Tanh returns values in the range (-1,1). However,
the ESCs of the quadcopter accept values only in the range
(0,1). A workaround is to write a function that converts the
obtained value of the output layer of the neural network
to the action value range (0,1) Fig. 6. We have made use
of sigmoid activation function, also known as inverse logit
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function, (o(x)) in PPO instead of tanh, which returns the
values in the range (0,1), thus outputting a value in the range
expected by the ESCs.

B 1
Cl4e @
Infact, tanh is a rescaling of the sigmoid activation function,

thus being computationally expensive. There is horizontal
stretching in tanh, as well.

o(x) (8)

B. Add Ornstein Uhlenbeck noise

In order to add uncertainty, we add Ornstein Uhlenbeck
noise (Uhlenbeck & Ornstein, 1930) to our action space.

7' (s1) = m(se|0F) + N 9)

7' (s¢) is the exploration policy which is constructed by adding
noise from the noise process N to the policy m(s:|07).
We have used temporally correlated noise such that better
exploration in physical environments is possible. Our Ornstein-
Uhlenbeck noise has # = 0.15 and o = 0.3. The Ornstein-
Uhlenbeck process considers the velocity of a Brownian
particle along with friction and results in temporally correlated
noise with 0 as the mean (Lillicrap, Hunt, Pritzel, Heess, Erez,
Tassa & Wierstra, 2015). With the introduction of Ornstein-
Uhlenbeck noise, this research work can be later extended to
numerous other kinds of quadcopter models as well.

C. Minimize change in rotational velocities of each motor

With the aim of achieving attitude control while minimizing
energy consumption, we have identified the key areas of
energy usage in a quadcopter. It is but natural for the movable
parts of a device to consume the maximum power. The motors
and the propellers connected to them, are the only moving
parts in a quadcopter. A large variation in revolutions per
minute of the motors depletes the battery very fast. Thus, we
have designed our algorithm to reduce the change in rotational
velocities of the 4 motors.

D. Proposed algorithm for Energy Efficient Attitude Control

Our attitude control algorithm aims to learn the process
to achieve a given angular velocity 2* while minimising
the energy consumption to achieve it. In each episode, we
initialize this angular velocity to a random value and the
PPO algorithm aims to make the angular velocity of the UAV
approach this target angular velocity while maximizing the
reward. In our case, minimizing the energy consumed along
with achieving the target angular velocity, is the reward.
We initialize the target angular velocity Q2 to Q7, Q. QF
corresponding to the roll, pitch and yaw axes with values
chosen randomly. Next, we run a loop with the aim to
maximize the reward, or in our case, minimize the negative
reward such that reward r, — 0. Within the loop, we initialize
the action ay, i.e. the output of our reinforcement learning
algorithm with the PWM values y; (where ¢« — 0 to 3) for
each of the four motors. To this value a;, we add the Ornstein
Uhlenbeck noise N. We send this action to the environment
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and receive the state s;;;. The state includes the current
angular velocity of the quadrotor, which is again a 3 element
value about the roll, pitch and yaw axes along with the motor
velocities (RPM) of the quadcopter model returned by the
environment. We store the absolute value of difference of the
motor velocity values received from the environment between
two epochs and take the average of the four values Aw. Next,
we take the angular velocity values received in state s;1
and find the difference between them and the target angular
velocity. We square the values of each of the 3 axes, add the
result and store the square root AS). We treat the differences
in the motor RPM values and the angular velocity values as
penalties that need to be minimized, thus optimizing energy
consumption. We take the product of the motor velocity
difference value Aw and a constant «v and add it to the angular
velocity difference value AS) and assign a negative sign to the
sum, to denote that it is a penalty that needs to be minimized.
The current values of motor RPM values are copied into the
previously stored motor RPM values for use in the next epoch.

Algorithm 1 Energy efficient attitude control (EEAC)
1: for episode:=1,....,.M do
2 Initialize a;, €2, w
3 Initialize the environment and receive initial state s;
4 Initialize Q" = {Q7, Q7, Q7}
5. for epoch t:=1,...., T do
6
7
8

Generate an action a; = (Yo, Y1, Y2, Y3)
at < a; + N where N is Ornstein Uhlenbeck noise
Send action a; to the environment and receive state

St41
9: St+1 = {(QWQPaQy)v (w&wi,wé,wg)}
10: Q= (2,8, 8y)
11: W = (wf, wh, wh,wh)
12: dw = (Jwp — wol, [wi — wil, [wh — wal, [ws — ws)

13: Aw = i Y o Own,

0 = (=005 (9 - 0% () - 2,)%)
15: AQ =157 60,

16: AQ +— VAQ

17: ry = —(a*x Aw + AQ)

18: Set (wo, w1, wa, ws) < (wj, wi, wh, ws)
19: return 7

20:  end for

21: end for

V. EXPERIMENTAL EVALUATION

We conducted simulations to test the effectiveness of our
proposed approach. In the following sections, we have de-
scribed the simulation settings and discuss the results.

A. Simulation Settings

In order to simulate, we have used GymFC , an open
source flight controller environment based on Open Al Gym.
GymFC runs on Ubuntu 18.04. We have installed Gazebo
v10.1.0 as the simulator for GymFC. Gazebo is the backend
simulator for designing robots, in our case the quadcopter.
The quadcopter is modelled as a .sdf file that is accessed by
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TABLE I
HYPERPARAMETERS OF THE PPO AGENT

Hyperparameter Value
Horizon(T) 500
Adam Stepsize 1 x 1074 xp
Num. Epochs 5
Minibatch Size 32
Discount Factor (v) 0.99
GAE Parameter (\) 0.95

Value of p reduces gradually from 1 to O during training

the environment. We have installed Dynamic Animation and
Robotics Toolkit (DART) version 6.7.0. DART is a physics
engine which provides the algorithms and data structures for
computing the dynamics of motion. GymFC integrates with
Open Al Gym, which is an open source toolkit for writing
and comparing reinforcement learning algorithms. We have
forked from the baselines available on the GitHub page of
Open Al Gym to use and manipulate the PPOI algorithm.
The neural network we have created consists of an input layer
having six nodes, an output layer with four nodes and two
hidden layers with 32 nodes each. The output of the neural
network is the Gaussian distribution mean with a varying
standard deviation, as has been defined in the PPO paper
(Schulman, Wolski, Dhariwal, Radford & Klimov, 2017) for
continuous domain problems like ours. The hyperparameters
used by the neural network are as stated in Table I. The
Ornstein Uhlenbeck Noise parameters are taken as follows:
1=0,6=0.15 and 0=0.3. We trained our model for a total of
10 million steps on a Ubuntu 18.04 system having 4 core
15-8250U CPU and the training process took 16 hours. We
created checkpoints at every 100,000 steps. Thus, we had 100
checkpoints to test and evaluate our algorithm’s performance.
We have compared the results of our algorithm with two
baselines, one is the PID baseline, where each motor of the
quadcopter is connected to a Proportional Integral Derivative
(PID) controller and the aim is to achieve a motor velocity
target which is the product of control signal and the maximum
motor velocity constant. The other baseline is the default
PPO controller of GymFC. We used TensorFlow 1.14 for
compilation of graphs. We have evaluated our results on the
following metrics:

Reward Our reward function, as stated previously, is a
function of the difference in angular velocity and the change
in motor RPM values. After running the training process, we
evaluated and compared the performance of our algorithm
with the GymFC baseline on the following four parameters:

e Mean Absolute Error (MAE) This is the difference
between the roll, pitch and yaw values of the quadcopter
(angular velocities) and the set point roll, pitch and yaw
values (target angular velocities).

o Average Motor Velocities (RPM values) Average of the
velocities of the four motors.
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e Average Change in Motor Velocities Average of the
absolute values of the difference of the motor velocities
of the current time step and the previous time step.

e Average Reward Output of our algorithm at each time
step.

Energy efficiency To calculate the energy consumed, we use
the formula (Oosedo, Konno, Matumoto, Go, Masuko, Abiko
& Uchiyama, 2010, pp. 254-259):

EnergyConsumption(E) = Cppn>d® (10)

where Cp is the co-efficient of energy consumption, p is
atmospheric density, n is the change in propeller speed
and d is propeller diameter. Cp = 27Cq where Cg is the
co-efficient of torque and Cg = 1.38 x 1073 in GymFC.
p = 1.275kg/m3 at sea level and at zero celsius temperature
(Jakubowski & Foster, 1999), (Kidder, 1921). The motor
model in this simulation is derived from PX4 Gazebo
simulation plugins where the model has a propeller diameter
(d) = 10cms. We plot the energy consumed at each of
the 100 checkpoints and compare our results with the PPO
baseline.

B. Results and analysis

In this section, we have displayed the results of our simula-
tions in the form of graphs obtained. As stated previously, we
have compared our proposed Energy Efficient Attitude Control
(EEAC) approach with the PPO baseline and compared the
results on four parameters. Fig. 7(a) depicts the Mean Absolute
Error (MEA), which is the difference between the target
angular velocities and the angular velocities of the quadcopter
about the roll, pitch and yaw axes. The baseline performs
better in this metric throughout the lifetime of the 10 million
training process. From the very start, the MAE values using
our approach are higher than found in the baseline. At around
1.5 million steps, this gap widens only to narrow at 5 million
steps. Thereafter, there is little difference in the MAE values
of our approach and the baseline. In Fig. 7(b), we compare
the average of the velocities of the four motors. We find the
average velocities in both the approaches to be more or less
the same. At about 6 million timesteps, the average velocities
of the motors of the baseline seem to reduce as compared to
our approach. The reason for this is that the model starts to
converge at this point. In Fig. 7(c), we compare the change
in the motor velocities. We find our approach performing
considerably better than the baseline, in this metric. Right
through the training setup, the graph depicts frequent spurts
in average motor velocities of the baseline approach. Our
method shows a much smoother change in RPM values,
thereby implying that we fare better than the baseline in this
particular parameter. One thing that draws our attention is the
visible spurts in the graph towards the end of the simulation,
which is due to the algorithm starting to converge and taking
into consideration the other parameters of the reward function.
In Fig. 7(d), we depict the average reward at each timestep.
A symmetrical log scale is used for the y-axis. The reward
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Comparison between EEAC and PPO baseline
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Fig. 7. Reward comparison between EEAC and PPO baseline

values increase during initial training phase, corresponding to
the reduction in MAE values. However, when the algorithm
tries to minimize energy consumption, the reward function
values go into negative territory. At about 7.5 million steps, the
model starts to converge. If we need to select any particular
checkpoint that can be used for attitude control in actual
quadcopters, we can safely use the results of any checkpoint
after 8 million steps for the purpose. (Later, we disclose
the comparison graph of one such checkpoint). The reward
function returns more or less similar results for EEAC and
the baseline, all through out the 10 million step run, thereby
implying that for the same performance of the two processes,
we our able to achieve better energy efficiency. This is depicted
in Fig. 8. This graph plots the energy consumed at each of the
100 checkpoints created during the training process. We find
the baseline process consuming considerably higher energy
with major crests and troughs during the first 30 checkpoints.
Thereafter, the variation in energy consumption stays at around
2.55e8. Our EEAC approach’s energy consumption hovers
around 2.475e8, a major reduction in value.

Since our model converges after 8 million steps, we have
selected a random step after that point and tested the quad-
copter’s angular velocity values of our approach and compared
the same with the PID baseline Fig. 9. The target values of roll,
pitch and yaw axes are drawn in black and the PID controller
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Roll, Pitch, Yaw comparison between EEAC and PID controllers
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Fig. 9. Roll, pitch, yaw comparison between EEAC and PID Controllers

and EEAC controller try to achieve the expected value using
respective techniques. Although both the approaches achieve
the target values, as can be seen from the graphs, there is wide
fluctuation in the case of PID controller. The target values
change twice during the run, once at about .75 timestep and
again at around 3.75 timestep. At both the time instances,
we find the angular velocities using PID controller varying
sharply from the previous values. This rapidly increases energy
consumption. On the other hand, the EEAC controller achieves
the target roll, pitch and yaw angular velocities very smoothly.

VI. CONCLUSION

In this paper, we have implemented a way to reduce energy
consumption in the quadcopter while achieving attitude control
using deep reinforcement learning. We have modified the exist-
ing Proximal Policy Optimization algorithm and incorporated
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sigmoid activation function to provide output in the range
(0,1) that can be used as PWM instructions to the quadcopter
directly. We have modelled real world uncertainties by includ-
ing Ornstein Uhlenbeck noise. The major source of energy
consumption in a UAV is variation of its motor velocities. We
have created our reinforcement learning algorithm’s reward
function in such a way that major weightage is given to
minimizing variations in propeller revolutions. Our reward
function aligns the angular velocity of the quadcopter to the
target angular velocity gradually, such that there are no major
changes in the motor RPM values.

Our current work can to be extended to incorporate the naviga-
tion control problem so that all the six degrees of freedom of
the quadcopter can be managed using reinforcement learning.
Also, we have disabled the effect of gravity in Gazebo, while
running the simulations. In case the impact of gravity is
incorporated, it will present interesting issues in the attitude
control as well as the navigation control problems.
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