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Abstract—For an ideal I of a Noetherian local ring (R,m) we
study properties of reduction of I . In particular, we investigate
behaviour of the reduction of I in term of relation type and
defining equation of the Rees algebra. We also prove a variant
of Northcott and Rees result.
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I. INTRODUCTION

For the ring R and an ideal I ⊂ R one can form the Rees
algebra R[It]. The Rees algebra of an ideal is the commutative
algebra analogue of the blow-up in algebraic geometry. Note
that the projective scheme Proj(R[It]) defined by the Rees
algebra R[It] is the blowing-up of Spec(R) along the variety
V (I).

A fundamental tool for examining properties of the Rees
algebra of an ideal is the reduction of an ideal. The concept
of reduction of ideals and integral closure were introduced by
Rees [9]. There is a close connection between reduction of
an ideal and module finite Rees algebra, where the ring is
a Noetherian. This connection is very important for proving
many results of Rees algebras. In Rees algebras, the Noether
normalization lemma is key for finding dimension of the fiber
cone and minimal reduction of an ideal.

A fundamental tool for examining properties of the Rees
algebra of an ideal is the reduction of an ideal. The concept
of reduction of ideals and integral closure were introduced by
Rees [9]. There is a close connection between reduction of
an ideal and module finite Rees algebra, where the ring is
a Noetherian. This connection is very important for proving
many results of Rees algebras. In Rees algebras, the Noether
normalization lemma is key for finding dimension of the fiber
cone and minimal reduction of an ideal.

In the last few decades, the theory of reduction of ideals
have been investigated by many researchers. However, the
relation type of ideals has not been studied much. The relation
type of ideals is useful to determine equation of the Rees
algebra and reduction number. The equation of the Rees
algebra is referred as generators of ker(φ) =: Q, where
φ : R[X1, . . . , Xr] → R[It] and I = (x1, . . . , xr). The
relation type of I , rt(I) is the least integer N ≥ 1 such

that Q = Q(N), where Q(N) is the ideal generated by
homogeneous equations of R[It] of degree at most N . If R
is a Cohen-Macaulay ring, then equation of the Rees algebra
is generated by Koszul relations [3]. In general, this result is
not true, even though ring is not a Cohen-Macaulay and ideal
is not a prime ideal. Later, Huneke [6] asked that if ring is a
complete equidimensional Noetherian local ring, then there is
a uniform bound for the relation type of ideals. Authors [1]
showed that answer is affirmative. They constructed examples
of parameter ideals of R with unbounded relation type in
non-Cohen-Macaulay locus of R having dimension two or
more. This result shows an idea of the complexity of the
structure of the equation of the Rees algebra. Again, Hukaba
[4] gave relation between reduction number and relation type
and proved that the reduction of an ideal induced an equation
of the Rees algebra of maximum degree. In [5] Heinzer and
Kim proved that the equation of the fiber cone of an ideal
is generated by a single equation of degree. In [8] authors
described the equation of the Rees algebra of an equimultiple
I of deviation and proved that there is a unique equation
of maximum degree in a minimal generating set of defining
equation of the Rees algebra.

In this paper, we prove a variant of the result (Theorem
8.6.6, [10])) and study properties of reduction of ideals. We
also describe defining equation of Rees algebra, when an ideal
I is of linear type.

II. PRELIMINARIES

In this section, we review some definitions, general facts
about the Rees algebra, linear type of an ideal and the fiber
cone. For more details the theory of reductions of ideals and
linear type ([10]) are given. Let R be a commutative ring
with identity and I be an ideal of R. The Rees algebra of I
is defined as

R[It] =

{
n∑
i=0

ait
i | n ∈ N, ai ∈ Ii, a0 ∈ R

}
=
⊕
n≥0

Intn,

where t is a variable over R.
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Definition 2.1: Let J ⊆ I be ideals of a ring R. Then J is
said to a reduction of I if J In = In+1 for some n ≥ 0. The
reduction number of I with respect to J is defined as

rJ(I) = Min
{
n ≥ 0 | J In = In+1

}
Definition 2.2: An ideal J of I is called a minimal reduction

of I if no ideal strictly contained in J is a reduction of I .
Remark 2.3:
1) Every ideal is itself a reduction.
2) If R is a Noetherian ring, then R[It] is a module-finite

R[Jt] if and only if J is a reduction of I and rJ(I)
is the largest degree of an element in a homogeneous
minimal generating set of the ring R[It] over the ring
R[Jt].

3) If n = rJ(I), then JmIn = Im+n for all m ≥ 0.
4) In a Noetherian local ring,minimal reductions exist and

it is unique minimal reduction of an ideal.
Suppose that (R,m) is a Noetherian local ring. The fibre cone
is defined as

FI(R) =
R[It]

mR[It]
'
⊕
n≥0

In

mIn

The Krull dimension of FI(R) is said to be analytic spread
of an ideal I . It is denoted by l(I) = l.

Definition 2.4: Let f : S(I) −→ R(I) be a canonical
morphism from the Symmetric algebra S(I) to the Rees
algebra R(I). An ideal I is said to be a linear type if f is an
isomorphism i.e S(I) ' R(I).

Proposition 2.5: If (R,m) is a Noetherian local ring having
infinite residue field R/m =: k and J ⊂ I is a minimal
reduction of I , then

1) J ∩mI = mJ .
2) µ(I) = µ(J) + µ(I/J).

Proof:

1) Let L = J∩mI . Consider the map φ :
J

mJ
→ J

L
. Then

the map φ is onto and lR(J/L) is finite, where lR(.) de-

notes the length of an R-module. So that
J

L
' (R/m)s

for some s > 0. Therefore J = (x1, . . . , xs) +L, where
xi ∈ J . We have to show that K = (x1, . . . , xs) ⊆ J
is a reduction of I . Since J is a reduction of I ,
In+1 = JIn ⊆ (K +mI)In ⊆ KIn +mIn+1 ⊆ In+1.
Therefore K is a reduction of I . Moreover by minimality
of J we must J = K and L = mJ .

2) By isomorphism theorem and (1), we have
J +mI

mI
'

J

J ∩mI
' J

mJ
. Therefore,

J +mI

mI
' J

mJ
. Consider

short exact sequence

0 −→ J

mJ
−→ I

mI
→ I

mI + J
−→ 0.

Note that
I

mI + J
' I/J

m(I/J)
. Henceµ(I) =

dimk(
I

mI
) = dimk(

J

mJ
) + dimk(

I/J

m(I/J)
= µ(J) +

µ(I/J).

Corollary 2.6: Suppose (R,m) is a Noetherian local ring
and J is reduction of I . Then J * mI .

Proof: We may assume that K ⊆ J is a minimal
reduction of I . Then we have to show that K * mI . Suppose
the contrary that K ⊆ mI . By Proposition 2.5, K∩mI = mK
and we have K = mK. Hence K = 0 ( Nakayama’s Lemma),
which is a contradiction. Therefore K * mI and so J * mI .

III. REDUCTIONS OF IDEALS

In this section, we give behaviour of reduction of ideals of a
linear type and a variant result of North-Cott. Now, we prove
the following Theorem 3.1 by using the notions of Remark
2.3.

Theorem 3.1: Let (R,m) be a Noetherian local ring with
infinite residue field R/m and J ⊆ I be a reduction of I .
Then

l = Min
{
µ(J)|J is a reduction of I

}
,

where µ(J) is the minimal number of generators of J .
Proof: Let J be a reduction of I . Then R[It] is module-

finite over R[Jt] (Remark 2.3). Consider the inclusion map φ :

R[Jt] ↪→ R[It] and its induced map φ̄ :
R[Jt]

mR[It] ∩R[Jt]
−→

R[It]

mR[It]
such thatφ̄(

∑
ait

i+mR[It]∩R[Jt]) = φ(
∑
ait

i)+

mR[It] =
∑
ait

i+mR[It], where ai ∈ J i. Claim: φ̄ is a well
defined map. Suppose

∑
ait

i + mR[It] ∩ R[Jt] =
∑
bit

i +
mR[It] ∩ R[Jt]. Then

∑
ait

i −
∑
bit

i ∈ mR[It] ∩ R[Jt].
Therefore

∑
ait

i −
∑
bit

i ∈ R[Jt] and
∑
ait

i −
∑
bit

i ∈
mR[It]. Hence

∑
ait

i+mR[It] =
∑
bit

i+mR[It]. It follows
that φ̄(

∑
ait

i + mR[It] ∩ R[Jt]) = φ̄(
∑
bit

i + mR[It] ∩
R[Jt]). So φ̄ is a well defined map. Since diagram

R[Jt]
φ−−−−→ R[It]yψ1

yψ2

R[Jt]

mR[It] ∩R[Jt]

φ̄−−−−→ R[It]

mR[It]

commutes i.e. ψ1oφ = φ̄oψ2, FI(R) is a module-

finite over
R[Jt]

mR[It] ∩R[Jt]
and l(I) = dim(FI(R)) =

dim

(
R[Jt]

mR[It] ∩R[Jt]

)
. But dim

(
R[Jt]

mR[It] ∩R[Jt]

)
≤

µ(J). Indeed, if {a1 +mI

mI
, . . . ,

ar +mI

mI
} is the mini-

mal generating set of
J +mI

mI
, then we can find map

R
m [X1, . . . , Xr]

T−→ R

m
⊕J +mI

mI
⊕... ∼=

(
R[Jt]

mR[It] ∩R[Jt]

)
given by Xi −→

ai +mI

mI
. Clearly the map T is onto. There-

fore, dim
(

R[Jt]

mR[It] ∩R[Jt]

)
≤ dim

(
R
m [X1, . . . , Xr]

)
=

r = dimR/m

(
J +mI

mI

)
= µ(J). Therefore l(I) ≤ µ(J).

We have to show that J is the minimal reduction of I generated

Institute of Science, BHU Varanasi, India 218



Journal of Scientific Research, Volume 65, Issue 5, 2021

by l(I) = l elements. First claim: J is a reduction generated by
l(I) = l elements. Let {x1, . . . , xs} be a minimal generating
set of I . Then {x1, . . . , xs} is a basis of the vector space
I/mI over R/m, where xi = xi + mI . Therefore, FI(R)
is a finitely generated R/m-algebra generated by x1, . . . , xs
elements. By the Noether’s normalization lemma, there exist
x1, . . . , xs ∈ FI(R) which are algebraically independent over
R/m such that FI(R) is a module-finite over R/m[x1, . . . , xs]
and dim(R/m[x1, . . . , xs]) = s = l. Hence x1, . . . , xl gen-
erates FI(R). Therefore, FI(R)n+1 = (x1, . . . , xl)FI(R)n.

This implies that
In+1

mIn+1
= (x1, . . . , xl)

(
In

mIn

)
for some

n ≥ 0. Hence

In+1

mIn+1
⊆ (x1, . . . , xl)I

n +mIn+1

mIn+1

and In+1 ⊆ (x1, . . . , xl)I
n + mIn+1 ⊆ In+1. So inequal-

ity holds throughout and we have, JIn = In+1, where
(x1, . . . , xl) = J . Hence J is a reduction of I generated by
l(I) = l elements.

Second claim: There is no reduction generated by less than
l(I) elements. Suppose contrary by that J is a reduction of I
generated by r < l(I) elements. Then for any reduction J of
I we have l(I) ≤ µ(J), which is a contradiction. Hence J is
the minimal reduction of I and l(I) = µ(J).

Following example shows that l(I) = l(J) but we do not
always have J is a reduction of I .

Example 3.2: Let R = k[[X1, X2]] be a ring over field k
and J = (X2

1 , X2) ⊂ I = (X1, X2) be ideals of R. Then
l(I) = l(J) = 2 but J is not a reduction of I .

Proposition 3.3: Suppose (R,m) is a Noetherian local ring
having infinite residue field R/m and I is of linear type ideal
in R. Then l(I) = µ(I) and I is itself a minimal reduction.

Proof: Let I be of linear type. Then R[It] ' S(I) and
the analytic spread of an ideal

l(I) = dim(R[It]⊗R R/m)

= dim(S(I)⊗R R/m)

= dimR/m(I ⊗R R/m)

= dimR/m(
I

mI
).

Since I/mI is a finite dimensional vector space over

field R/m, µ(I) = dimR/m(
I

mI
) = l(I). Therefore

µ(I) = l(I). Assume that J is a minimal reduction of
I . By Theorem 3.1, l(I) = µ(J), µ(I) = µ(J). So
that dimR/m(I/mI) = dimR/m(J/mJ) and by Proposition
2.5(1), dimR/m(J + mI/mI) = dimR/m(J/J ∩ mI) =
dimR/m(J/mJ) = dimR/m(J/mJ). Therefore dimR/m(J+
mI/mI) = dimR/m(I/mI) and we deduce that J+mI = I .
By Nakayama’s lemma, J = I .

Proposition 3.4: Let R be a Noetherian ring and I be of
linear type ideal in R. Then relation type of I is one.

Proof: Let I = (x1, . . . xr) be an ideal and X1, . . . , Xr

be variables over R. Consider the ring homomorphism φ :
R[X1, . . . , Xr] → R[It] defined by Xi → xit. Then φ is
a onto R/m-algebra homomorphism and its kernel Q is a

homogeneous ideal. If Q(1) is a homogeneous component of
Q with degree 1, then Q(1) = {a1X1 + · · · + arXr | ai ∈
R, a1x1 + · · · + arxr = 0}. Since Q(1) ⊂ Q, we have
commutative diagram

R[X1, . . . , Xr]

Q(1)
−−−−→ R[X1, . . . , Xr]

Qy y
S(I) −−−−→ R[It]

Since I is of linear type, S(I) ' R[It]. Therefore
R[X1, . . . , Xr]

Q(1)
' R[X1, . . . , Xr]

Q
and Q(1) = Q. So that

rt(I) = 1. Note that rt(I) = rJ(I) + 1 for every reduction
J of I . By Proposition 3.3, I is itself minimal reduction and
rJ(I) = 0. Again we can see that rt(I) = 0 + 1 = 1.

Corollary 3.5: Suppose R is a Noetherian ring and I is
an ideal of linear type. For all prime ideal p ∈ Spec(R)
containing I , Ip is a minimal reduction itself.

Proof: Note that (Rp, pRp) is a Noetherian local ring
having infinite residue field Rp/pRp. Since I is of linear type,
Ip is of linear type for all p ∈ Spec(R). By Proposition 3.3,
Ip is itself a minimal reduction.

If I is an ideal of linear type, then µ(Ip) = l(Ip) for each
prime ideal I ⊂ p (Corollary 3.5). In general, the converse is
not true as follows:

Example 3.6: Let R =
k[[X1, X2]]

(X2
1X2, X1X2

2 )
= k[[x1, x2]] be a

ring. Suppose that I = (x2) and p = (x1, x2) are ideals of R.
Then l(Ip) = µ(Ip) = 1 and S(I) ' R(I). Therefore I is not
of linear type.

Lemma 3.7: Suppose (R,m) is a Noetherian local ring and
R
m := k is infinite residue field. Let l and s are fixed positive
integers and define the set Y = {A ∈Ml×s(k) | A : ks −→ kl

is onto }. Then
1) the set Y is a open subset of kls.
2) the set Y is a non-empty if and only if l ≤ s.

Proof:
1) Let {v1, . . . , vs} be fixed basis of ks. Then we have a

basis {x1, . . . , xl} of kl such that

xi =

s∑
j=1

aijvj ,∀ i = 1, . . . , l, where aij ∈ k.

Consider a map A =

a11 · · · a1l

...
...

am1 · · · asl

 : kl −→ ks.

Since A is onto, rank(A) = l. By definition of the rank,
the basic open set of kls is of the form

U =


a11 · · · a1s

...
...

al1 · · · als

 |
∣∣∣∣∣∣∣
a11 · · · a1s

...
...

al1 · · · als

∣∣∣∣∣∣∣ 6= 0

 .

Consequently, the number of basic open sets are
(
s
l

)
.

So that Y is a open set and it is the union of all
(
s
l

)
basic open sets.
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2) We have to show that Y is a non-empty open set.
Consider the matrix

A =
[
aij
]
l×s

defined as follows

aij =

{
1 ; i = j
0 ; i 6= j

}
Thus A has block form

[
[I]l×l [O]l×s−l

]
, where l ≤ s.

Clearly
A : ks −→ kl

is onto. Therefore A ∈ Y and Y is a non empty set.
Conversely, suppose Y is a non empty set and A ∈
Y . Then rank(A) = l and the Rank and Nulity
Theorem, l ≤ s

Theorem 3.8: If (R,m) is a Noetherian local ring having
infinite field R/m := k and J = (x1, . . . , xs) ⊂ I are ideals
of R, then the set

U =

{
u11 . . u1s

u21 . . u2s

. . . .

. . . .
ul1 . . uls

 ∈ Al×s(k) |


u11 . . u1s

u21 . . u2s

. . . .

. . . .
ul1 . . uls



x1

x2

.

.
xs

 =


b1
b2
.
.
bl


and (b1, . . . , bl)I

n = In+1

}
is a non empty open subset of

kls if l ≤ s, where l and s are fixed positive integers.
Proof: First we have to show that U is a well defined set.

Indeed, if
u11 . . u1s

u21 . . u2s

. . . .

. . . .
ul1 . . uls

 =


v11 . . v1s

v21 . . v2s

. . . .

. . . .
vl1 . . vls

 ,
then for all i, j, uij − vij ∈ m and
u11 . . u1s

u21 . . u2s

. . . .

. . . .
ul1 . . uls



x1

x2

.

.
xs

 =


b1
b2
.
.
bl



and


v11 . . v1s

u21 . . u2s

. . . .

. . . .
vl1 . . vls



x1

x2

.

.
xs

 =


c1
c2
.
.
cs

.

Therefore, bi = ui1x1 +ui2x2 + · · ·+uisxm, ci = vi1x1 +
vi2x2 + · · ·+ visxs and bi− ci = (ui1− vi1)x1 + · · ·+ (uis−
vis)xs. Note that uij + m = vij + m and bi − ci ∈ mI .
Then (c1, . . . , cl)I

n = In+1 (Proposition3.2, [12]). Since I =
(x1, . . . , xs), In =< xr11 . . . . .x

rs
s | r1 + r2 + · · ·+ rs = n >

and In+1 =< xl11 . . . . .x
ls
m | l1 + l2 + · · ·+ ls = n+ 1 >.

Assume that the minimal generating sets of In and In+1

are fix and b1, . . . , br ∈ I . Consider the map
(
In

mIn

)l
f−→

In+1

mIn+1
such that f(y1, . . . , yl) = b1y1 + b2y2 + · · ·+ blyl =

b1y1 + · · · + blyl + mIn+1. Note that the map f is a well
defined. Now f(y1, . . . , yl) = b1y1 + b2y2 + · · ·+ blyl =
b1y1 + · · ·+ blyl = (u11 x1 + · · ·+ u1s xs)x

r1
1 x

r2
2 . . . . .x

rs
s +

· · · + (ul1 x1 + · · · + uls xs)x
l1
1 x

l2
2 . . . . .x

ls
s = (u11 +

u21 + · · · + ul1)xl1+1
1 xl22 . . . . .x

ls
s + · · · + (u1s + u2s +

· · · + uls)x
l1
1 x

l2
2 . . . . .x

ls+1
s , where bi = ui1x1 + . . . , uisxs.

Therefore the coefficients of monomials xl1+1
1 xl22 . . . . .x

rs
s ,

xl11 x
l2+1
2 . . . . .xlss , . . . , x

l1
1 x

l2
2 . . . . .x

rs+1
s are linear polynomi-

als.
It suffices to show that f is onto if and only if

(b1, . . . , bl)I
n = In+1. Let (b1, . . . , bl)I

n = In+1. Then we

have to show that the map f is onto. If x ∈ In+1

mIn+ 1
, where

x = x + mIn+1 and x ∈ In+1, then x ∈ (b1, . . . , bl)I
n, for

In+1 = (b1, . . . , bl)I
n. Therefore, x = (b1a1 + · · ·+ blal)y =

b1a1y + · · · + blaly. Take y1 = a1y, y2 = a2y, . . . , yl =
aly, where ai ∈ R and y ∈ In. It follows that if x =

b1y1 + · · ·+ blyl +mIn+1 and (y1, . . . , yl) ∈
(
In

mIn

)l
, then

f(y1, . . . , yl) = x. Therefore, the map f is onto. Conversely,
if f is onto, then for any x ∈ In+1/mIn+1 there exists

(y1, . . . , yl) ∈
(
In

mIn

)l
such that f(y1, . . . , yl) = x. So that

x = b1y1 + · · ·+ blyl +mIn+1 and In+1 ⊆ (b1, . . . , bl)I
n +

mIn+1. We go modulo (b1, . . . , bl)I
n,

In+1

(b1, . . . , bl) In
⊆

(b1, . . . , bl) I
n +mIn+1

(b1, . . . , bl) In
= m

(
In+1

(b1, . . . , bl) In

)
. By

Nakayama lemma,
In+1

(b1, . . . , bl) In
= 0. Therefore, In+1 =

(b1, . . . , bl) I
n. In this case, we have (b1, . . . , bl) is a reduction

of I . By assumption of U , we have

U =

{
u11 . . u1s

u21 . . u2s

. . . .

. . . .
ul1 . . uls

 ∈ Al×s(k) |


u11 . . u1s

u21 . . u2s

. . . .

. . . .
ul1 . . uls



x1

x2

.

.
xs

 =


b1
b2
.
.
bl


and f is onto

}
.

By Lemma 3.7, U is a non empty open subset of kls if
l ≤ s.
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