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Abstract: The paper presents the two parameter Nakagami
distribution as an efficient alternative lifetime model for
generalized type-ll1 progressive hybrid censored data. Such a
censoring mechanism is most appropriate for recording failure
times of robust items which have long lifetimes. Maximum
likelihood and Bayes estimates are developed for the unknown
parameters including the case of both parameters unknown.
Posterior analysis is conducted under squared error and Linear
exponential loss functions. A simulation study and two real data
based empirical assessment of the theoretic findings of the paper
are undertaken as illustrations.

Index Terms: Bayesian Parametric Estimation, Generalized
Progressive Hybrid Censoring, Linear exponential loss function,
Maximum Likelihood Estimate, Squared Error Loss.

I. INTRODUCTION

Lifetime data represent waiting time to occurrence of an event
of interest such as death, divorce, breakdown of a machine
component, radioactive decay of unstable atoms, surging or
plummeting of stock price and so on. Various social, biological,
economic and industrial events fit to the diverse lifetime
distributions with varying degrees. Best fit enhances predictive
capability of the most closely fitted model. This has led to
continuous pursuit of a better fitting model for individual events
among researchers. Over the last six decades several new
continuous distributions for modelling and analysis of lifetime
data have been proposed. Extended versions of existing models
such as beta modified, transmuted, exponentiated and
generalized distributions represent concerted endeavour to
address enhanced flexibility concerns with respect to skewness
and kurtosis to specific applications and to the recorded data
sets. Different methods of extending baseline distributions are
available in literature. See for instance, Eugene et al. (2002),
Jones (2004), Ghitany et al. (2007), Xhang and Xie (2007),
Cordeiro and de Castro (2011), Nadarajah and Eljabri (2013),
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Sarhan and Akaloo (2013), Gomes et al. (2014) and Nadarajah et
al. (2015). Distributions belonging to the skewed family have
been found to be more flexible and versatile than the simple
probability distributions by the applied data scientists.

It is common in life-testing and reliability studies to have
incomplete information on failure times as some experimental
units are reported as lost due to unknown causes or intentionally
removed before termination of the experiment. Test units for
which failure time information is not obtained are called
censored units and the resulting data are called censored data.
For highly reliable and durable products, the life-times are very
long. Therefore, to optimize experimental time and cost, the test
units are removed according to a well-defined mechanism called
censoring scheme. The conventional Type-1, Type-Il and hybrid
(mixture of Type-1 and Type-II) censoring schemes do not allow
removal of test units during the conduct of life-test. For highly
reliable products, Progressive Type-Il censoring scheme permits
removal of a pre-determined number of test units undergoing life
test, at each observed failure. Thus, from a sample of n
independent and identical units undergoing life test, the number
of random removals R; at the i failure, i = 1,2,...,m and the
number of failures to be observed m are fixed in advance. R;
units are randomly removed immediately at the point of first
failure, X;..,.., from the n — 1 surviving units. At the second
failure, X5..,.,, R, UNits are randomly removed from the n —
2 — R, surviving units. At the m" failure, X,,.,..., all remaining
SurvivorsR,, =n—m — R; — -+ R,,_, are removed and the test
terminates. When R, =--=R,, =0 and m=n, it is the
complete sample while R; =--=R,,_; =0,andR,, =n—m
leads to the conventional Type-Il censoring scheme or failure
censoring which has a major disadvantage that if the last failure
takes long time, then termination time of the experiment is also
prolonged.

Kundu and Joarder (2006) proposed a progressive Type Il
hybrid censoring scheme in which the experiment on life-test is
terminated at a min{X,,,. .., T}, Where T € (0, o) represents a
pre-specified time point and X;.,,,.,, denotes time of i*" failure.
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However, there is a possibility that very few failures may
occur before time T, which leads to very few observed failures.
Cho et al. (2015) proposed a generalized Type-l progressive
hybrid censoring scheme which ensures a specified number of
failures k < m, by defining termination time under this scheme
as max{Xx: m:n, Min{Xm: m:n,T}}, where T and k are pre-decided.
Generalized Type-1l hybrid censoring scheme proposed by
Chandrashekhar et al. (2004) ensures observing sufficient
failure counts while simultaneously capping the experimental
time by proposing termination of a life-time experiment at
max{min{X; . n, T2}, T1} for predetermined Ty, T, € (0, o) such
that T, <T, and 1<r<m. Gory and Cramer (2016)
included progressive removals aspect in it, to decide terminal
point of the life test under generalized Type-ll progressive
hybrid censoring (GTPH) described as  max{min{Xm: m+rm
-T2}, T1}. Using this censoring scheme, they determined density
functions of the MLEs for both the location and the scale
parameters of exponential distribution using spacing-based
approach. Independently Lee et al. (2016) extended Type-II
progressive hybrid censoring to the GTPH and considered exact
as well as approximate inference for bias-adjusted parameters of
exponential distribution. Seo and Kim (2017) proposed a robust
Bayesian point estimation approach founded on a hierarchical
structure for two parameter exponential distribution under
GTPH. Koley and Kundu (2017) analysed generalized
progressively censored data in the presence of competing risk.
Kotb (2018) gave Bayesian prediction bounds for exponential
type distribution under generalized progressively hybrid
censored (GPH) scenario. Wang (2018) and Wang (2020)
considered competing risk Weibull failure times model under
GPH for complete and under partially observed failure causes
respectively.

The present paper focuses on Bayesian parametric estimation
under GTPH for two parameter Nakagami distribution (ND).
Numerous  empirical  experiments have  demonstrated
applicability of ND in the scientific fields of wireless
communications, wave propagation, intensity distribution due to
rapid signal fading, modelling the echo from tissue and
ultrasonic tissue characterization; see for instance, Shankar et al.
(2001), Karagiannidis (2006), Tsui et al. (2010) among others.
In this paper ND - a distribution popular in medical and wave
theory sciences, is elaborately studied for possible use in
reliability engineering and mechanical hardware modelling
under GTPH and compared with some other established lifetime
models to assert its suitability as a prospective lifetime model.

The rest of the paper is organised as follows: Section 2 details
GTPH. ND model is introduced under section 3 along with its
reliability characteristics. Maximum likelihood estimates (MLE)
of the unknown parameters are derived under GTPH in section
4. Corresponding Bayesian parametric estimates under Squared
Error (SELF) and Linear Exponential (LINEX) loss functions
are presented under section 5. Section 6 details simulation study
which is conducted to illustrate the theoretical inferences drawn.
Two real data sets are explored to establish the findings of the
present study in section 7. Section 8 concludes the achievements
of the present paper.

Institute of Science, BHU Varanasi, India

Journal of Scientific Research, Volume 65, Issue 5, 2021

Il. GENERALIZED TYPE-Il PROGRESSIVE HYBRID CENSORING
SCHEME

The test experiment begins after fixing integer m(< n) and
two threshold times T; and T, such that0 < T; < T, < o. The
following three cases may arise under GTPH:

Q) The first m failures are observed with predetermined
random withdrawals R;,i = 1,...,m, if the mt" failure occurs
before time Ty such that further failures are continued to be
observed but without random removals. This censoring
procedure is represented as ; R* = (Ry, ..., Rpy_q, 00*Rm+1)),
where 0%*(®m*+1) denotes a vector of R, + 1 zeros.
(i) If the m*" failure time is located between times T; and
T,, then the experiment continues only until the mt" failure is
observed, and all the remaining items are removed at the m‘"
failure time.
(iii) If the m®" failure time exceeds time T, , then the
experiment is terminated at time T, with removal of the
remaining surviving items. Gorny and Cramer (2016) assume
that the total number of removed items including failure is
m(R+1), i=1.,m
m+R,—i+1, i=m+1,..m+R,
The count of observed failure till the time Ty is denoted by D, =
Y org (Ximarym) k= 1,2 . The observed sample
under above censoring design GTPH is represented as under:

represented by y; = {

Case (i) Occurrence of mt" failure before time Ti is

represented as Xm.m4r,m < Xp,mrpm < T1s
then the sample is Xi.n1g, 0 s XD smaryms D1 €
(m,..,m+Ry,)

Case (ii) Occurrence of m" failure time located between

times T, and T, is represented as Ty < Xmmar,ym < T2;
then the sample is Xi.myig,,ms -
,..m—-1),D,=m

Case (iii) Occurrence of m®" failure time exceeding time T, is

represented as Xom.mr,m > T2 s
Then the sample is X;.pmiryms - Xpymarpms D1 €
,...m—-1)

Likelihood functions L(8) corresponding to the cases (i), (ii)
and (iii) discussed above are given as (1), (2) and (3). L(@) for
the unknown parameter 8 of a probability distribution with
cumulative distribution function (cdf) denoted by F(x) and
probability density function (pdf) denoted by f(x) is given as
under,

'Xm:m+Rm:n: Dl €
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[1—[:1:1Yi] [1 - F(T; )™ 1—[‘-1:11 f(xi:m+Rm;ni 9) [1 = F(Xim+rpms 9)]Ri (1)

1

- [1_[21%] Hzlf(xi:erRm:n; 6) [1 — F(Ximarpms 9)]Ri

[T rf i =rasomren [T fGmimm 01 - FGnsan 01"

1. THE NAKAGAMI DISTRIBUTION

A random variable X follows ND(a, 1) with shape parameter
a = 0.5 and scale parameter 1 > 0, if its pdf is given by

fO0) = Z (DD exp(-2x2); x>0, @
The corresponding cdf is given by
a2
FG) =2 x> 0,a2051>0 5)

such that T'(z,a) = foz t%le~tdt is the lower incomplete
gamma function.

ND(1,4) is Rayleigh distribution, ND(0.5, 1) is half-Normal
distribution and if y~Gamma(a, 8) then Vy~NGD(a, a8)

Reliability Characteristics

Mean time to system failure (MTSF): F“J’O'S\[g; a=>051>0

Ta
Reliability function: 1 — —T (ftZ,a); t>0,a>051>0
Fa A

O _ 1 (%2
Mean residual life: L‘[lrl"‘r—(g}t'a)]'ﬁ; t>0,a=0521>0
[ arena)

Fa \1
(%)at(za—l) exp(—%tz) .
iG] 7 0205420

2
Hazard rate function:f%

Fig. 1 illustrates flexibility of the ND model for adapting to
the data variations in the shapes of pdf, cdf, reliability and hazard
rate function of ND for different values of the parameter « while
keeping value of the scale parameter A as fixed.
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Fig.1: (a) Density f(x, a, A) (b) Reliability function S(x, a, A)
(c) hazard rate function h(x, a, A) (d) cumulative distribution
function F(x, a, A) of ND

Entropy
Entropy measures variation
summarizing diversity in the data .

in the uncertainty thereby

Renyi entropy is defined as Iz(8) = —log{f f(x)%dx},
§d>0and s # 1.
Hence, for ND : Iz(8) = log(2) + llog(a) + Llog (FaS —
_ 208 S5+1 S— -1
%) - £—5log(Fa) — Mlo gl) — ( )log(é)
(6)

Shannon entropy is defined as = E[—log(f(x))] . Hence, for
ND :
S =2E — Qa-1E,
log (1))
such that E; = E(x?) and E, = E(log (x))

—log2 — log(Ta) — a(log(a) +
()

V. MAXIMUM LIKELIHOOD ESTIMATION

For a GPTH sample x = (xq,x,,...,x;) from the ND,
likelihood functions corresponding to (1)-(3) are specified as,

() L@ A = (1-
a Yd{+1
I‘lez,a 1 2\ %1 4 _—
e (&) () mixee(1-
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(ii) L(a, Alx) = c, (%)m (%)am m 201 (1 _

R
a) exp (—; ! 1xi2)

(iii) L(a, Alx) = (:3(

a % ad;

r—;iz a) da+1 (%) 1 (%) H?—Zl x;2a1 (1 _

B e (- 231,27

where c; =TT, vi, ¢ = [TEe v and ¢ =TI, v

The corresponding log-likelihood functions are obtained as,

a2,
0 (@A) = In(c,) + yd1+1ln(1 i )+
d;(In(2) —In (Ta)) + d;a(In(a) — In (1)) +
Qa - DTy, — % +3% Rin (1 -
F%xiz,a
la )'
(i) l(a,A) = In(c;) + m(In(2) — In (Ta)) +
ma(In(a) —In (1)) + 2a — 1Ty, — 222 3™ Rin (1 -
F%xiz,a
la )'
X 2
(i) U@2) = In(cs) + Yayualn (1 -z ’“) +
d,(In(2) —In (Ta)) + dya(In(a) — In (A)) + Qa—-1DT;; —
%+2 Riln (1 - 202 x;’“),
where, T;; = Y5 In(x;) and Ty, = X% x? , cases i =
1,2,3

Solutions of the following pairs of equations provide
MLE(&, 1) of the ND parameters(a, A).

. l(a,d) {F“'—wn(r%ﬂz-a)}
() 9a _ Vdi+1 —[Fa_F%lela} —ny(a) +
d;(In(a) — In(A) + 1) + 2Ty, — 22 +
o ramviltSeia)
Yo Ri {ra—r%xiz,a}
olad) _ {¢11(F%T12ﬂ)} _dia | aTip
aa Vai+1 {ra-r$my2a} 2 12
a o (@)}
Zi:l Ri {Fa—l‘gxiz,a} (8)
(i) = —nyy(a) + m(n(@) —In@) + 1) +
T wm g (T be(grla))
2T21 1 + Zi=1 i {Fa—[‘%xiz,a}
Al(al) _  ma | aTxy {QZZ(F%xiZ,a)}
-t RS0
al(al) _ {F“'—llln(r%Tzzﬂ)}
(iii) Py d2+1m—n¢1(0@+

)

dy(In(@) —In(A) + 1) + 2T3; — 22 + T2 R, o]
A7t

e _ {os2(Gre )} _

dya
ar . Vdz+1 {

aTzy
I‘a—F%le,a} A

+/12

Zdz R; [®32(le ,a)}

=1 {I‘a I‘le ,a}
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(10)

B(F%le,a)
da !

dln (Fa)

such that ¥(a) = Wiy (g T2, a) =

H(FET 2 a)
g 2 _ 272
a1 (a T ,a) T oa

da
a2
Voo (Sx,a) = o(r§xi’a)
32\a7 o
a2 ax. 2
ET 2 _ 6(F7T1 ,a) _ 6(F7xi ,a)
o11 21 ya )= Y ) 012 xl ,(Z _—aﬂ.
)
0,0 (Cx2a) = o(rgxia)
2\ ar
a 2 a 2
) (ET 2 a) _ o(rg:%.2) & ( X, a) _ o(rgx.a)
31 2 2 BV 4 32 L oA !
ala
e =—
da

MLEs are obtained in mathematically intractable form, hence
numerical solution for (ii) are obtained using Newton-Raphson
(NR) iterative method for given values of (n,m, R, x). Similarly
MLEs under (i) and (iii) are evaluated given (T;,d,,n, R, x) and
(T, d,,n, R, x) respectively.

Using invariance property of MLESs we get,
MTSF _ I‘a+A0.5 (%)

ra
R()=1-
a ~ .
—I‘(f a) S t>0
%(1) tza-1exp (_%tZ)
“h(D) = T & s t>0

1—F—&F(%t2,d)

V. BAYESIAN ESTIMATION

Bayesian parameter estimation under symmetric SELF,
weighs losses for over estimation and under estimation equally
and is equal to the posterior mean. Asymmetric linear
exponential loss function (LINEX) introduced by Varian (1975)
is defined by L(8) xe®® —c§—1,c# 0, where§=8—8.
The sign and magnitude of c reflects the direction and degree of
asymmetry, respectively.

Bayes estimate under SELF and under LINEX is given by
0, =Ep6) and 6, = —%lnEg (e=<?) respectively, provided
that Eg(8) and E,(e<?) exists and is finite, where E, denotes
the expectation relative to the posterior distribution.

Estimation under known shape parameter

Under the assumption that the parameter « is known, the
natural family of conjugate prior for the scale parameter A is
given byg(1) = /1‘9 lg=d4,

. . 9
and variance of the unknown parameter A are summarized as 3

; A>0,d>0,9>0.Prior mean

and ;’;2 respectively. Posterior mean for the three cases (i), (ii)
and (iii) :
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Under SELF
~ 1 o)
0 As=k—1foa(1—
a Ydi+1
r3m’ “) ' ( 2 )dl (a)“dl % x,20-1 (
— - X 1
Fa Fa A =171
a R;
rzxia _agdy _2\2Y 19-1,-da
Ta ) exp( Xi=1 Xi )w’1 e"da
where ky=[" (1 -
a Ydi+1
FEle,a 1 2 dq « ady dy 2a-1 _
Ta (Fa) (l) Hi:l i 1
ngiz,a Ry _
Ara ) exp( 12?11 ; ) /119 1 dldl
(i)

A= 2 6 e (-

a 2 Ri o
Fl)rc:z'a> exp (_%Zﬁﬂiz)?—ﬁlﬁ_le‘“dl where
ka

oo 2 m a am m
[ @ T

o \la A i=1

a 5 \N o
_F/llici;la eXp( C; mn 2)?19119 1 _dldl
.. o~ 1 [oe)
(iii) xs=k_3fo 1(1_

d ad;
A2 \Yda+1 1

M) (@) et (1-
Ta Ta A =171

) d -
Ara ) exp( 2121 l) /119 1 dldl

where
[00)
k3 = fO (1 —_
ad;
X 2 Ydy+1 dy
AN (i) (ﬁ) Hdz x.2a-1(1 —
Ta Ta A =17t

R;

&2
r,ﬁrf;,a> exp( 2?21 1) AW-1le=drqy
(11) - (13)

Under LINEX
i 1, =-1 1 (> -cA _
(i) A= Cln <k1 fo e (1
@ Ydi+1
FIle'a 1 2 dq a adq d; 20,_1( ~
l'a ) (Fa) (/1) Hi=1 Xi 1
a R;
[‘_xiz'a L .
g ) exp (_%2?11 X ) 191 d/ld/1>
.. 5 _ 1 1o (2 m « am
(i) A= Cln <k2 fo e (F(x) (/1)

9
m .. 2\4 19-1,-dA
mox?) A0 e dl)

m . 2a-1
i=1%i (1 -
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a2 \Vdy+1 d1 adz
M i a dy 2a-1 _
Ta ) (Fa) (A) Hl 1Xi <1
e i agdy 24 29-1,-aa
—) exp (—;Zizlxi )5/1 e %dA
(14) - (16)

For given (Ty,dy,n, R, x) for case (i), given (n,m,R,x) for
case (ii) and given (T,,d,,n, R,x) for case (iii), Bayes
estimators of A given o under SELF are obtained as (11) - (13)
and under LINEX loss function are obtained as (14) - (16).

Estimation under both parameters unknown

Conditional prior distribution of A given «, appropriately
represented by the conjugate gamma density function with

hyper-shape parameter 9 >0 is assumed as g;(i|la) =
-9 A
“F—ﬂ/lﬁ‘le'a; A > 0. Decaying exponential prior distribution

indicating fatigue is assumed for the shape parameter a

1 1
represented as g, (@) =%e'3(“'5); a > 0.5, where d is the

positive hyper-scale parameter.
Joint bivariate prior density of (a, 1) is given as, (a, 1) =
1(a?+dA 1

-9 o =
Zﬁﬂﬁ‘le d( a 2>; a > 0.5,4 > 0. Posterior mean for the

three cases (i), (ii) and (iii) :
Bayes estimator of a under SELF
0 “ (1 -
FITl “ ydlﬂ 2\Y (a\% —a g
e ) ()" () Mo (1

1/a?+dA 1

F%’“'Z'afi exp (— 2¥i, Xzz) < o1l ) dade

lF'a A dard

where hy= [ (1 -
Ya
[‘%le,a 1+1 2 dq ocd1 Hdl 2a—1 1—
Ta Ta 2 Xi
a 2 Ri a?+dd_1
I=xi“,a
2re _aydr )_ 9-1, (
Ta ) eXp( AZi:lx‘ dnsv)L

= arda
(i) @=-a omhiz(i)m (%)am
+dﬂ. 1

a2, R;

e 2ym ) 9-1 d(
expl—=X". x; A le a

Ta ) p( AS=12 ) ary

m . 2a-1
i=1%i (1 -

)d/lda

h = ﬂ 2 a “ m ., 2a-1(q
where = I =1 X
R; 2
%2 g\ ¢ -9 _1fa+dA 1
e _%ym ,2)“_ 9-1 d( a2
= ) exp ( 7 Y X e A’ e dida
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~ © o 1
(iii) ag=J,.af, h—3<1 -
dq ad;,

A 2 Yda+1
are (i) (ﬁ) M, x,2e1 (1 -
Ta Fa y! =17t

a2 Ri _ 1(a?+dA 1
e d a ¥ g ——(———)
L) exp(—lz 2 xz)—)L19 le"d\ @ 2)dlda

Ta =17t ) arg

where hy = [f (1 -
a Ydo+1 dy adz
FETZZ'“> 2 a da . 2a-1 ( _

Ta (Fa) (l) Hi:l Xi L
M2\ N -9 _Lfa?+da 1
’1; a) exp (—%Z?jlxﬂ)zﬁﬁ_le d< @ Z)d/lda

7) - (19)

Bayes estimator of o under LINEX loss function

. ~ 1 oo _ o 1
(i) aL=——ln< 0s€ ), h—l(l—

14
F—T a) d1+1 )ad1 H?11 xlza—l (1 —
g -9 _Lfa?+da 1
= ) i 1x12)%2‘9‘1e = z)d/lda>
(i) a, =
1 [ 12\ e e
Aol [ [RG @ (o
c fe fhz Ta (/1) l:1xl
0.5 0
r¢ A 9
B L B L
o exp 12,5 dFﬁA e dAda
~ 1 o _ o 1
(iii) a,=--ln Jos€™ J; n_3(1_
ad,
I=7,%,a Vdz+1 2 ! a dy 20-1
e ) (&) () M (1—
2 1(a?+dd 1
0" (230 200 i
(20-22)
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Bayes estimator of 2 under SELF

(i)

(i)

L=frafnt(i-

Q. Ydi+1 d ad
RN (_) ! (2) I k21—
Fa Ta p! =171

a2 R —
I'sxi“a 9 _
i ady 2)“ 9-1
expl—=X:1 x; AV e
Ta ) p( Zl=1 v/ are

A=l lfOShz( ) (%)“m Zleim_l<1_

R;

la

Gi) A= f7 Ak (1-

ad,

a_ o R;
Fixi

Bayes estimator of 2 under LINEX loss function

(i)

(ii)

(iii)

4 1 © 3o 1
AL——Eln(fO e ¢ 0.5h_1<1_

“ dz 2)“_19 9-1,"
exp | — X% )=—=A"""e @
Ta ) p( /121 17 Jary

O e e T

d
A 2 Yda+1 1
FATz ,a (i) (g) l—[dz X 20-1 1—
Ta Ta p! =171

(23-25)

a Ya
FzT1Z,06 1+1 ( 2 )d1 (“)(xch Hd1 w211
Ta Ta A =171

am
“Im f°°e—c/1 mi(i)m(ﬁ) m . 2a-1(q1 _
c 0 0.5 h, \T'a p) =1
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1(a +d1_1>
a dad/l)

a +d/1_1)
a  2/dadA
(26-28)
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For given (Ty, dq,n, R, x) for (i), given (n,m, R, x) for (ii) and
given (T,, d,, n, R, x) for (iii), we obtain Bayes estimators of the
unknown parameters o and 1 under SELF and LINEX loss
function.

VI. SIMULATION STUDY

In the previous sections, we have obtained expressions for
MLEs and for Bayes estimators under SELF and LINEX loss
function of shape («) and scale (1) parameters for ND under
GTPH. Objective of the simulation study is to assert that Bayes
estimates are always closer to the true vatues vis-a vis MLES.

In this section, we present Markov Chain Monte Carlo
(MCMC) study to observe the pdrformance of inferential
procedures developed in the previclis sections for different
sample sizes and under different choiées of censoring ratios. All
the simulation work has been undlertaken using statistical
software R.

MCMC algorithm is stated as under:

0] We generate random samples of size n=20, 30 and 50

for GTPH schemes for case (ii) using methodology

proposed by Balakrishnan and Sandhu (1995).
(i)  We compute MLEs &,, and 1,, of parameter A and «
under different sample sizes and for different proposed
censoring scheme with true values of (a, 1) = (2,1)
and (a, 1) = (3,2) by NR method.
(iii)  We compute Bayes estimators @ , A5 , @, and 4, for
the parameters o and A under SELF and LINEX for
different sample sizes n and under different three
specifications of random removals for each combination of
(n, m) censoring scheme, assuming the initial values of
(a,1) = (2,1) and (a, A) = (3,2) with hyper
parameter values fixed at d=3, 9=4 and 6=4 .
(iv)  Steps 1-3 are repeated N=10000 times. Means and
MSEs are computed for the generated Monte Carlo samples
of different sample sizes n and also for the effective
sample sizes m.

N —

258



Journal of Scientific Research, Volume 65, Issue 5, 2021

Table 1: Estimated means and MSEs of parameter « for different censoring ratios under GPH for case (ii) when true value of a=3

Table 2: Estimated means and MSEs of parameter / for different censoring ratios under GPH for case (ii) if true value

of 1=1

Institute of Science, BHU Varanasi, India

m  Censoring ay MSE(o. Qs MSE(a a, MSE(a
scheme m) s) L)
8 (2*3, 0*2, 2*3) 2.6744 0.8774 2.4656 0.5221 2.27 0.3933
1 (4*1, 0*10, 4*1) 3.7523 0.9089 2.1582 0.3617 362.47 0.3043
- 1 (2*1, 0*14, 2*1) 2.8952 0.8053 2.8849 0.4474 213.14 0.2747
: 1 (3*3, 0*6, 3*3) 3.4596 0.7492 24116 0.3617 283.53 0.1944
: 1 (2*3, 0*12, 2*3) 3.5496 0.6197 2.5421 0.2616 623.25 0.2256
: 2 (1*3, 0*18, 1*3) 3.2325 0.5759 2.7071 0.3326 712.70 0.0874
: 2 (5*3, 0*14, 5*3) 3.3617 0.3562 2.7896 0.0873 722.70 0.1808
. 3| (2*5,0%20, 2*5) 3.1213 0.4372 2.8045 0.1672 783.09 0.0873
z 4|  (5*1, 0*38, 5*1) 3.0321 0.1935 2.9651 0.0583 623.03 0.0776
1

m|  Censoring Ay MSE(4 A MSE (4 A MSE (4
scheme M) s) L)

8 (2*3, 0*2, 2*3) 0.86 0.0583 1.43 0.1846 1.5045 0.1846

38 87
1 (4*1, 0*10, 4*1) 0.87 0.0369 0.72 0.1106 1.4823 0.1523

2 14 06
1 (2*1, 0*14, 2*1) 0.94 0.0339 0.82 0.0897 0.8978 0.1106

6 52 57
1 (3*3, 0*6, 3*3) 1.34 0.0342 1.29 0.0459 1.2915 0.1178

2 17 15
1 (2*3, 0*12, 2*3) 1.26 0.0419 1.31 0.0507 1.2532 0.0897

8 97 18
2 (1*3, 0*18, 1*3) 0.89 0.0291 0.87 0.0293 0.8535 0.0221

4 56 98
2 (5*3, 0*14, 5*3) 0.93 0.0175 1.23 0.0243 1.2394 0.0548

0 76 74
3 (2*5, 0*20, 2*5) 0.98 0.0135 1.04 0.0321 1.2111 0.0375

0 58 72
4 (5*1, 0*38, 5*1) 0.99 0.0211 1.02 0.0128 0.9921 0.0129

0 21 33
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Table 3: Estimated means and MSEs of parameter o for different censoring ratios under GPH for case (ii) when true value of a=2

n| m| Censoring Ay MSE( Ag MSE(4 AL MSE(4
scheme m) s) L)
2 8 (2*3, 0*2, 2*3) 1.5632 0.1935 141 0.1949 1.59 0.1893
0 13 23
1 (4*1, 0*10, 4*1) 1.6532 0.1132 1.61 0.1281 2.15 0.1195
2 37 67
1 (2*1, 0*14, 2*1) 1.7806 0.0748 2.33 0.1032 1.73 0.1089
6 79 64
3 1 (3*3, 0*6, 3*3) 2.3475 0.0574 1.76 0.1892 2.26 0.0879
0 2 35 72
1 (2*3, 012, 2*3) 1.7581 0.0676 1.79 0.0543 1.76 0.0675
8 45 73
2 (1*3, 0*18, 1*3) 2.2197 0.0484 1.97 0.0635 2.15 0.0524
4 54 67
5 2 (5*3, 0*14, 5*3) 1.8784 0.0518 2.23 0.0512 211 0.0423
0 |0 78 34
3 (2*5, 0*20, 2*5) 1.9725 0.0336 1.98 0.0448 2.21 0.0394
0 31 68
4 (5*1, 0*38, 5*1) 1.9830 0.0145 211 0.0112 1.98 0.0129
0 93 32

Table 4: Estimated means and MSEs of parameter A for different censoring ratios under GPH for case (ii) when true value of 1=2

n m Censoring Ay MSE( Qs MSE( ay MSE(aw)
scheme awm) as)
2 8 (2*3, 0%2, 2*3) 2.2527 0.4053 1.4722 0.3697 1.76 0.3697
0 52
1 (4*1, 0*10, 1.7765 0.3664 1.6691 0.1767 1.82 0.3189
2 4*1) 23
1 (2*1, 0*14, 1.7953 0.3422 1.8221 0.2043 2.45 0.2043
6 2*1) 27
3 1 (3*3, 0*6, 3*3) 2.2161 0.1859 2.5123 0.1351 1.82 0.2359
0 2 28
1 (2*3, 0*12, 2.1976 0.1971 2.6043 0.1016 2.60 0.1832
8 2*3) 49
2 (1*3, 0*18, 1.9821 0.1725 1.8750 0.0868 2.53 0.0663
4 1*3) 67
5 2 (5*3, 0*14, 1.9091 0.1253 2.2516 0.0663 2.45 0.1767
0 0 5*3) 23
3 (2*5, 0*20, 1.9623 0.0931 2.1431 0.0576 2.28 0.0676
0 2*5) 71
4 (5*1, 0*38, 2.1168 0.0526 2.0734 0.0433 2.12 0.0342
0 5*1) 55
Table 5: LLs, -2InL, AIC, BIC, K-S and AD of the fitted distribution for D; .
Parameters Estimates
Distributio -2InL AlC BIC K-S AD
n A A
Nakagami 4.8336 5.2823 623.8586 627.8586 632.013 0.0514 0.1596
7
Gamma 18.0975 2.5927 1985.681 1989.681 1993.83 0.0664 0.2335
6
Weibull 4.6488 7.6130 726.08 730.08 734.235 0.0662 0.2843

Institute of Science, BHU Varanasi, India
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Table 6: LLs, -2InL, AIC, BIC, K-S and AD of the fitted distribution for Da.

Distribution Parameters
Estimates -2InL AIC BIC K-S AD
a A
Nakagami 6.2229 6.2506 182.6428 186.6428 191.111 0.0542 0.2446
Gamma 23.3808 9.5380 | 590.8718 594.8718 599.34 0.0696 0.3792
Weibull 5.5048 2.6508 | 253.6034 257.6034 262.071 0.0567 0.2568
7

Table 7: Estimated means and MSEs of parameter « for different censoring ratios under GPH of case (ii) for D1

n|M Censoring awm MSE(@wm) as MSE(&s) ar MSE(aL)
scheme
20 |8 (2*3,0*2,2*3) | 5.9118 0.0994 5.9001 0.0847 | 5.9138 0.0797

12 | (4*1,0%10,4*1) | 59162 | 0.0926

5.9239 0.0845 | 5.9155 0.0659

16 (2*1, 0*14, 2*1) | 5.9399 0.0749

5.9297 0.0696 | 5.9399 0.0565

30 |12 (3*3,0*6, 3*3) | 5.9166 0.0890

5.9278 0.0803 | 5.9166 0.0646

18 (2*3,0*12, 2*3) | 5.9360 0.0686

5.9570 0.0639 | 5.9381 0.0510

24 (1*3,0*18, 1*3) | 5.9511 0.0502

5.9707 0.0439 | 5.9552 0.0353

50 |20 (5*3, 0*14, 5*3) | 5.9438 0.0496

5.9631 0.0520 | 5.9683 0.0490

30 | (2*5,0%20,2*5) | 5.9515 | 0.0313

5.9892 0.0387 | 5.9853 0.0302

40 (5*1, 0*38, 5*1) | 5.9718 0.0216

5.9895 0.0153 | 5.9972 0.0162

Table 8: Estimated means and MSEs of parameter o for different censoring ratios under GPH of case (ii) for D2.

n M Censoring Ay MSE( Qs MSE( oL MSE(
Scheme ay) as) aL)
2 8 (2*3, 0*2, 2*3) 4.90 0.0958 491 0.0984 4.93 0.0723
0 58 97 31
1 (4*1, 0*10, 4*1) 4.93 0.0613 4.92 0.0639 4.93 0.0594
2 56 65 39
1 (2*1, 0*14, 2*1) 4.93 0.0478 4.93 0.0537 4.93 0.0300
6 83 89 95
3 1 (3*3, 0*6, 3*3) 4.94 0.0651 4.92 0.0797 4.93 0.0682
0 |2 62 66 81
1 (2*3, 0*12, 2*3) 4.95 0.0579 4.94 0.0354 4.95 0.0388
8 81 00 64
2 (1*3, 0*18, 1*3) 4.97 0.0463 4.95 0.0286 4.96 0.0127
4 32 27 83
5 2 (5*3, 0*14, 5*3) 4.96 0.0538 4.94 0.0379 4.95 0.0213
0 |0 24 07 66
3 (2*5, 0*%20, 2*5) 4.97 0.0356 4.97 0.0265 4.97 0.0127
0 60 03 42
4 (5*1, 0*38, 5*1) 4.98 0.0216 4.98 0.0120 4.99 0.0113
0 24 29 70

Posterior distributions obtained in section 5 are not in
tractable form. Hence, we use MCMC approximation technique
to obtain the parameter estimates via simulation. Simulation
study shows that there is a decrease in MSEs as we increase the

Institute of Science, BHU Varanasi, India

sample size, hence increase in sample size increases accuracy of
the estimates obtained (Table 1-4).

Also, Bayes estimates obtained under LINEX have smaller
MSEs than those under SELF while Bayes estimates record
smaller MSEs compared to MLEs. Bayes estimates under
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LINEX loss are found to be more precise (Table 1-4) and thus
superior to the conventional MLEs for situations that confirm to
ND pattern of hazard curve.

VIl. REAL DATA ANALYSIS

This section demonstrates application of ND for lifetime
modelling of electronic devices (D1) and hardware such as fibres
(D2) using two real data sets. Fig. 2 and Fig. 3 display density,
distribution and reliability characteristics graphically for the ND
fitted data sets. For comparative assessment of better fit, popular
lifetime distributions such as gamma and Weibull distributions
are also fitted to the same data sets. Best model among the three
is determined based on the log-likelihood (LL) measure,
Kolmogorov-Smirnov (K-S) test, Akaike Information Criterion
(AIC), Bayesian Information Criteria (BIC) and Anderson-
Darling statistic (AD) which are given in Table 5-6. Computed
values of MLEs( @y, A, ), and Bayes estimates under
SELF(&s, Ag) and Linex loss(@,,A,) are presented in Table 7-8
for the following two real lifetime data sets D1 and D> :

D: (Data Set 1): Data reported by Schafft et al. (1987) and
taken from Lawless (2003) represents hours to failure of 59
conductors of 400-micrometer length. All reported test units
failed at the same given high temperature and current density
environment, thus providing homogenous conditions for
concomitant variables.

D. (Data Set 2): Data representing tensile strength of 69
carbon fibres (measured in GPa) which were tested under
tension at gauge lengths of 20mm were taken from Bader and
Priest (1982).

The formulae for computing AIC and BIC are as follows:

AIC = —2InL + 2k and BIC = —2InL + klog(n), where k =
the number of parameters and n represents the sample size.
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Fig. 2: (a)The fitted density functions of Gamma, Nakagami
and Weibull superimposed with empirical histogram,
(b) respective reliability functions,
(c) respective probability difference plots and
(d) respective PP plots of sample data
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VIII. CONCLUSION

This article presents a new and better fitted lifetime
distribution for reliability analysis of machinery components and
industrial wares. We present mathematical properties and
develop expressions for the classical and the Bayes estimators
for ND under GTPH. Hazard curve of ND shows that it can be
used to model robust items with long lifetimes. GTPH ensures a
certain minimum failure observations while ensuring that the
experimental time is not overly prolonged. Intermittent removals
of live test units under progressive mode of censoring provide a
strategic means of limiting the experimental time for robust
items under life-test. ~ Parameter estimation case when one
parameter is known has been presented, followed by developing
theoretical framework for the case of both parameters unknown -
under the classical as well as Bayes paradigm. Descriptive
numerical assessment based on a simulation study and two
empirical data based studies is carried out. MLE, and Bayes
estimators under a symmetric and an asymmetric loss function
individually are developed. For the chosen data sets from the
classical life testing experimental trials, ND has been adjudged
best fit according to deviance summaries and other performance
indicators of goodness of fit, both for the complete data set for
the classical MLE (Tables 5 and 6), as well as under various
censoring scenarios considered under GTPH for the Bayes
estimates derived from posterior distributions (Tables 7 and 8).
The final objective is to discover a new model approach to
analyse industrial output data and to advocate use of the more
efficient Bayes estimation strategy for life-test experiments.
Thus, our present study favours ND as a strong contender for
lifetime modelling of machine components vis-a-vis the
conventional gamma and Weibull models.
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