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Abstract- In this article, we study some statistical properties of a 

new distribution namely Exponentiated Aradhana distribution. 

The Exponentiated Aradhana distribution has two parameters 

(scale and shape). The different structural properties of the 

proposed distribution have been obtained. The parameters of 

the proposed model have been estimated through the maximum 

likelihood method. Finally, we present a real lifetime data set 

where it is observed that Exponentiated Aradhana distribution 

has a better fit compared to two parameter Pranav and two 

parameter Sujatha distribution. 

Keywords: Exponentiated distribution, Aradhana distribution, 

Order statistics, Entropies, Reliability analysis, Maximum 

likelihood Estimation. 

I. INTRODUCTION 

A new concept of distributions was introduced by Gupta et 

al. (1998) , who discussed a new family of distributions 

namely the Exponentiated exponential distribution. The 

family has two parameters scale and shape, which are similar 

to the weibull or gamma family. Later Gupta and Kundu 

(2001), studied some properties of the distribution. They 

observed that many properties of the new family are similar 

to those of the weibull or gamma family. Hence the 

distribution can be used an alternative to a weibull or gamma 

distribution. The two-parameteric gamma and weibull are the 

most popular distributions for analyzing any lifetime data. 

The gamma distribution has a lot of applications in different 

fields other than lifetime distributions. The two parameters of 

gamma distribution represent the scale and the shape 

parameter and because of the scale and shape parameter, it 

has quite a bit of flexibility to analyze any positive real data. 

But one major disadvantage of the gamma distribution is that, 

if the shape parameter is not an integer, the distribution 

function or survival function cannot be expressed in a closed 

form. This makes gamma distribution little bit unpopular as 

compared to the Weibull distribution, whose survival 

function and hazard function are simple and easy to study. 

Nowadays Exponentiated distributions and their 

mathematical properties are widely studied for applied 

science experimental data sets. Pal et al. (2006) studied the 

Exponentiated weibull family as an extension of weibull 

distribution. Rodrigues et al. (2017) studied the 

exponentiated generalized Lindley distribution. Hassan et al. 

(2017)  

discussed Exponentiated Lomax geometric distribution with 

its properties and applications. Nasiru et al., (2018) obtained 

Exponentiated generalized power series family of 

distributions. Rather and subramanian (2018) discussed the 

Exponentiated Mukherjee-Islam distribution which shows 

more flexibility than the classical distribution. Rather and 

subramanian (2019) discussed the Exponentiated ishita 

distribution with properties and Applications. Uwaeme et al. 

(2019) discussed on the Exponentiated Pranav distribution. 

Ashour and Eltehiwy (2014) derived and discussed the 

Exponentiated power lindley distribution. Onyekwere et al. 

(2021) discussed on the Exponentiated Rama distribution 

with properties and Applications. Shawky and Zinadah 
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(2009) obtained the Exponentiated Pareto distribution and 

discuss its different methods of estimation. Recently, Rather 

and subramanian (2020), discussed the Exponentiated 

Garima distribution which shows more flexibility than the 

classical distribution.                

          In this paper, we consider a two-parameter 

Exponentiated Aradhana distribution and study some of its 

properties. Aradhana distribution is a newly proposed one 

parameteric distribution formulated by Shanker (2016) for 

several engineering applications and calculated its various 

characteristics including stochastic ordering, moments, order 

statistics, Renyi entropy, stress strength reliability and ML 

estimation. The two parameters of an Exponentiated 

Aradhana distribution represent the shape and the scale 

parameter. It also has the increasing or decreasing failure rate 

depending of the shape parameter. The density function 

varies significantly depending of the shape parameter (see 

Fig.1). 

II. EXPONENTIATED ARADHANA DISTRIBUTION 

(EAD) 

The probability density function of Aradhana distribution is 

given by 
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and the cumulative distribution function of Aradhana 

distribution is given by 
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A random variable X is said to have an Exponentiated 

distribution, if its cumulative distribution function is given by  
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Then X is said to have an Exponentiated distribution. 

The probability density function of X is given by 
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By Substituting (2) in (3), we will obtain the cumulative 

distribution function of Exponentiated Aradhana distribution 
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and the probability density function of Exponentiated 

Aradhana distribution can be obtained as 
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III. RELIABILITY MEASURES

 
In this section, we will obtain the survival function, hazard 

function and Reverse hazard rate function of the 

Exponentiated Aradhana distribution. 

The survival function of Exponentiated Aradhana distribution 

is given by 
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The hazard function is also known as hazard rate, 

instantaneous failure rate or force of mortality and is given 

by 
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The reverse hazard rate of Exponentiated Aradhana 

distribution is given by 
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IV. STATISTICAL PROPERTIES 

In this section, we will define and discuss the different 

statistical properties of the proposed Exponentiated Aradhana 

distribution.  

A. Moments 

Suppose X is a random variable following Exponentiated 

Aradhana distribution with parameters α and θ, then the rth 

order moment  E(X r) for a given probability distribution is 

given by 
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Using Binomial expansion of  
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Equation (7) will become 

)8(

0 22
2

)22(
1

)1(2
)1(

0

1
)1(

22
2

3

dx

i
θxθxiθx

ex
r

x

i i

i




++

++
+

+−
+




=

−
−

++


















=











Again 

using Binomial expansion of 

 

 

k
θxθx

k k

i

i
θxθx



























++

++



=
=

++

++
+

22
2

)22(

0

22
2

)22(
1









 

Equation (8) becomes 
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After simplification, we obtain 
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Since equation (9) is a convergent series for all r ≥ 0, 

therefore all the moments exist. 

Therefore 
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Therefore the Variance of X can be obtained as  
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B. Harmonic mean 

The Harmonic mean for the proposed Exponentiated 

Aradhana distribution can be obtained as 
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Using Binomial expansion in equation (10), we get 
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On using Binomial expansion in equation (11), we obtain 
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After 

the simplification of equation (12), we obtain  
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C. Moment Generating Function and Characteristics 

Function  

In probability theory and statistics, the moment generating 

function of a real valued random variable is an alternative 

specification of its probability distribution. As its name 

implies the moment generating function can be used to 

compute the moments of a distribution. Let X have an 

Exponentiated Aradhana distribution, then the moment 

generating function of X is obtained as  
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Similarly, the characteristic function of Exponentiated 

Aradhana distribution is given by 
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V. ORDER STATISTICS 

 Order statistics represents the arranging of samples in an 

ascending order. Order statistics also has wide field in 

reliability and life testing. Let X(1), X(2), ….., X(n) be the order 

statistics of a random sample X1, X2, ….Xn drawn from the 

continuous population with probability density function fx(x) 

and cumulative distribution function Fx(x), then the pdf of rth 

order statistics X(r) can be written as 
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Substitute the values of equation (5) and (6) in equation (13), 

we will obtain the pdf of rth order statistics X(r) for 

Exponentiated Aradhana distribution and is given by 
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statistics X(n) for Exponentiated Aradhana distribution can be 

obtained as 
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and the pdf of first order statistics X(1) for Exponentiated 

Aradhana distribution can be obtained as 
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VI. MAXIMUM LIKELIHOOD ESTIMATION 

 In this section, we will discuss the maximum likelihood 

estimation for estimating the parameters of Exponentiated 

Aradhana distribution. Let X1, X2,….Xn be the random sample 

of size n from the Exponentiated Aradhana distribution, then 

the likelihood function can be written as  

( )


=

−

−

++

++
+−

−
+

++

=





























n

i

θx
e

θxθxθx
ex

n

n

L

1

1

22
2

)22(
11

2
)1(

)22
2

(

3

),(












 

The log likelihood function is given by  
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The 

maximum likelihood estimates of α, θ which maximizes (14), 

must satisfy the following equations given by
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Where ψ (.) is the digamma function.
 

Hence, it is very difficult to estimate the value of θ because 

the above likelihood equation is too complicated. Therefore 

we use R and wolfram mathematics for estimating the 

required parameter θ. 

VII.  INFORMATION MEASURES OF 

EXPONENTIATED ARADHANA DISTRIBUTION 

 A.Renyi Entropy 

The Renyi entropy was given by Alfred Renyi (1961) in the 

context of fractual dimension estimation, the Renyi entropy 

forms the basis of the concept of generalized dimensions. 

The Renyi entropy is important in ecology and statistics as 

index of diversity. The Renyi entropy is also  

important in quantum information, where it can be used as a 

measure of entanglement. Entropies quantify the diversity, 

uncertainty, or randomness of a system. For a given 

probability distribution, Renyi entropy is given by 
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  Using binomial expansion in (15), we get  
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using binomial expansion in (16), we get 
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simplification of (17) we obtain 
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B. Tsallis Entropy 

The concept of Tsallis entropy was introduced in 1988 by 

Constantino Tsallis. A generalization of Boltzmann-Gibbs 

(B-G) statistical mechanics initiated by Tsallis has gained a 

great deal to attention. This generalization of B-G statistics 

was proposed firstly by introducing the mathematical 

expression of Tsallis entropy for a continuous random 

variable it is defined as 
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Using binomial expansion in (18), we get 
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Again using binomial expansion in (19), we obtain
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After the simplification of (20), we get 
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VIII. DATA ANALYSIS

 

In this section, we use the two real-life data sets in 

Exponentiated Aradhana distribution and the model has been 

compared with two parameter Pranav and two parameter 

Sujatha distributions. 

The first data set represents the breaking stress of carbon 

fibres of 50 mm length (GPa) reported by Nicholas and 

Padgett (2006) and the data set is presented below in table 1 

 

Data set 1 

0.39   0.85   1.08    1.25    1.47    1.57    1.61   1.61 

1.69   1.80    1.84   1.87    1.89    2.03    2.03    2.05 

2.12    2.35    2.41   2.43    2.48    2.50    2.53   2.55 

2.55     2.56   2.59    2.67   2.73     2.74   2.79   2.81 

2.82     2.85    2.87   2.88    2.93    2.95   2.96  2.97 

3.09   3.11     3.11   3.15   3.15     3.19   3.22   3.22 

3.27   3.28    3.31    3.31   3.33    3.39    3.39    3.56 

3.60    3.65     3.68   3.70    3.75    4.20   4.38   4.42 

4.70    4.90 

The second data set represent the strength data of glass of the 

aircraft window reported by Fuller et al (1994).The data set is 

provided below in table 2. 

Data set 2 

18.83  20.80   21.657   23.03   23.23   24.05 24.321   

25.50    25.52   25.80   26.69   26.77  26.78  27.05 

27.67   29.90   31.11   33.20   33.73   33.76   33.89 

34.76   35.75   35.91   36.98   37.08  37.09  39.58  

44.045   45.29   45.381 

In order to compare the Exponentiated Aradhana distribution 

with two parameter Pranav and two parameter Sujatha 

distributions. we consider the Criterion values like BIC 

(Bayesian information criterion), AIC (Akaike information 

criterion), AICC (Corrected Akaike information criterion) 

and -2logL. The better distribution corresponds to lesser 

values of AIC, BIC, AICC and -2logL. For calculating the 

criterion values like AIC, BIC, AICC and -2logL can be 

evaluated by using the formulas as follows. 

LnkBIC

  
kn
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Where k is the number of parameters in the statistical model, 

n is the sample size and -2logL is the maximized value of the 

log-likelihood function under the considered model. 

 

 

 

 

 

Table 3 shows comparison of Exponentiated Aradhana distribution with two parameter Pranav and two 

parameter Sujatha distribution 

Data 

sets 
Distribution MLE S.E -2logL AIC BIC AICC 
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239.6409 

 

 

 

237.2014 

 

 
Two 

Parameter 

Sujatha 

 

 

0.0958ˆ

0.0010ˆ

=

=





 

 

0.0064ˆ

6755.0ˆ

=

=





 

 

 

 

241.3064 

 

 

 

245.3064 

 

 

 

248.1744 

 

 

 

245.7349 

 

From table 3, it can be observed that the Exponentiated 

Aradhana distribution have the lesser AIC, BIC, AICC and 

-2logL values as compared to the two parameter Pranav 

and two parameter Sujatha distributions. Hence we can 

conclude that the Exponentiated Aradhana distribution 

leads to a better fit than the two parameter Pranav and two 

parameter Sujatha distributions.  

CONCLUSION 

In the present manuscript, we have introduced a new model 

of the Aradhana distribution called as Exponentiated 

Aradhana distribution with two parameters (scale and 

shape). The subject distribution is generated by using the 

Exponentiated technique and the parameters have been 

obtained by using the maximum likelihood estimator. 

Some statistical properties along with reliability measures 

are discussed. The new distribution with its applications in 

real life-time data has been demonstrated. Finally, the 

results of two real lifetime data sets have been compared 

over two parameter Pranav and two parameter Sujatha 

distributions and it has been found that the Exponentiated 

Aradhana distribution provides better fit than the two 

parameter Pranav and two parameter Sujatha distribution. 
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