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Abstract: Purpose of writing this paper is to introduce a formula 

to approximate the value of factorial of an integer greater than one 

by use of arithmetic and geometric means of three consecutive 

integers. Methodology applied is the use of approximation of 

arithmetic mean (AM) to geometric mean (GM) of three closely 

placed large positive integers in arithmetic progression. The 

approximation is further improved by applying a correction factor. 

Three consecutive multiplying integers of a factorial of an integer are 

grouped and the bunches so formed, are replaced with the cube of 

their respective arithmetic mean, thus reducing the number of terms 

to one third. Bunching successively reduces the terms finally to one. 

Multiplying the final term with cumulative correction factor, yields 

the result.  The method is simple, unattempted, unique, innovative 

and yields precise results.   

Index Terms: Approximation, Arithmetic Mean, Bunching, 

Correction Multiplier, Factorial, Geometric Mean, Telescopic. 

Geometric Series. 

I. INTRODUCTION 

    Factorial of an integer 𝑛 > 0, has 𝑛    multiplying terms 1, 2, 3, 

… , 𝑛 and it is given by equation   

𝑛! = 1 · 2 · 3 … (𝑛 − 2) · (𝑛 − 1) · 𝑛.                (1)     

If integer (𝑛 − 1) is divisible by three and first multiplying term 

of factorial of a positive integer being 1, is excluded, remaining 

(𝑛 − 1) terms can be grouped in bunches of three terms, forming 

(𝑛 − 1)/3 bunches. Since consecutive  multiplying terms of a 

factorial of a positive integer, are in arithmetic progression, 

therefore, GM of three consecutive terms of the bunch can be 

approximated to its AM after multiplication with correction 

factor. Each bunch, then can be replaced with cube of respective 
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AM of the terms of the bunch and the product of the cube of 

respective AM, when multiplied with correction factor, yields 

value of the factorial of the corresponding integer. At some places 

in this paper, correction factor is also written as correction 

multiplier on account of the fact that it multiplies with product of 

cubes of AM’s to achieve correction. In fact, both connote to same 

meaning.                                                                                                                                                                                                                

Lemma 1:   Product of three consecutive terms (𝑎 − 1)(𝑎)(𝑎 +

1) of a bunch can be approximated to 𝑎3, if 𝑎 is large. If 𝑎 is not 

large, then product of the terms (𝑎 − 1)(𝑎)(𝑎 + 1) of a bunch 

can be approximated to 𝑎3  multiplied with correction factor 𝑐,  

where 𝑐 = (1 − 1/𝑎2).   

    Proof: Admittedly multiplying terms 1, 2, 3, … , (𝑛 − 2), (𝑛 −

1), 𝑛, are in arithmetic progression with a common difference of 

1. If we take three consecutive terms say  (𝑎 − 1), (𝑎), (𝑎 + 1),  

their AM is ‘𝑎’ and GM is (𝑎3 − 𝑎)1/3. Obviously, 𝐴𝑀 > 𝐺𝑀 as  

𝑎 > (𝑎3 − 𝑎)1/3. Ratio of AM and GM is 𝑎/(𝑎3 − 𝑎)1/3 which 

is always more than 1. If 𝑎 ≫ 1, then this ratio approximates to 1 

or  𝐴𝑀/𝐺𝑀 ≃ 1. That means (𝑎3 − 𝑎)  is replaceable with 𝑎3 , 

when 𝑎 is large. If 𝑎 is not large, then for replacing (𝑎3 − 𝑎) with 

𝑎3,  a correction factor of (1 − 1/𝑎2), will have to be multiplied 

with 𝑎3. 

Example: Let 𝑎  be large integer equal to 10000 , then 

(𝑎 − 1)(𝑎)(𝑎 + 1) = 9.9999999 × 1011  and 𝑎3 = 1012.  

Therefore, 9.9999999 × 1011 can be approximated to 1012  with 

in percentage error of 1.00000001 × 10−6  which is negligible. 

If 𝑎  is   small integer say  3, then (𝑎 − 1)(𝑎)(𝑎 + 1) = 24 and 

𝑎3 = 27.  27  can not be approximated to 24  as there is an 

appreciable percentage error of 8.3333333   and needs 
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multiplication with correction factor, 𝑐 = (1 − 1/32)  or 𝑐 =

0.8888888889.                                      

If integer  (𝑛 − 1) is divisible by 3, terms of 𝑛! ,   given  by 

equation (1), can be grouped in (𝑛 − 1)/3 bunches, where one 

bunch comprises of three consecutive terms. In that case, equation 

(1) can be written with bunches of three terms as given below.    

     𝑛! = 1 · {2 · 3 · 4} · {5 · 6 · 7} … {(𝑛 − 2) · (𝑛 − 1) · 𝑛}.    (2)                                                                                            

On replacing each bunch with cube of  its 𝐴𝑀, multiplied with 

respective correction factor, we get 

     𝑛! = 1 · {33 (1 −
1

32)} {63 (1 −
1

62)} {93 (1 −
1

92)} … [{1 −

1/(𝑛 − 1)2}(𝑛 − 1)2] .                 (3)           

     Lemma 2: Factorial 𝑛 can be shrunk to factorial (𝑛 − 1)/3 

where integer 𝑛 − 1 is divisible by 3. by forming bunches of three 

consecutive terms excluding first term one. The value of n!, after 

bunching, will  equal {𝐶(𝑛−1)/3} · (3𝑛−1) · {(
𝑛−1

3
) !}

3

, where 

𝐶(𝑛−1)/3 is a correction factor for (𝑛 − 1)/3  bunches and equals 

(1 − 1/32)(1 − 1/62)(1 − 1/92) … {1 − 1/(𝑛 − 1)2}. 

    Proof: Equation (3), after bunching can also be written as  

    𝑛! = (𝐶𝑛−1

3

) · {33 · 63 · 93 … (𝑛 − 7)3 · (𝑛 − 4)3 · (𝑛 − 1)3}  

where 𝐶(𝑛−1)/3 is a correction multiplier for (𝑛 − 1)/3 bunches 

and is given by equation  

    𝐶(𝑛−1)/3 = [(1 −
1

32) · (1 −
1

62) · (1 −
1

92) … {1 −
1

(𝑛−7)2} ·

{1 −
1

(𝑛−4)2} {1 −
1

(𝑛−1)2}].                 (4) 

Or  

    𝑛! = {𝐶(𝑛−1)/3}(3𝑛−1) {1 · 2 · 3. … (
𝑛−7

3
) · (

𝑛−4

3
) · (

𝑛−1

3
 )}

3

 

           = {𝐶(𝑛−1)/3} · (3𝑛−1) · {(
𝑛−1

3
) !}

3

                                                (5) 

Example: Let 𝑛 = 13, then according to equation (5),  𝑛! =

(𝐶4) · (312) · {4!}3,  where 𝐶4 = [(1 − 1/32)(1 − 1/62)(1 − 1/

92){1 − 1/122}],   according to equation (4). On calculation,  

𝐶4 =0.8476011448. Therefore,  𝑛! = (. 8476011448) · (312) ·

{4!}3 =6.2270208 × 109. Actual value of 13! is 6.2270208 ×

109 and thus both are equal  

II.   CORRECTION MULTIPLIER 

A.  Derivation of general function for correction multiplier 𝐶𝑥 

    Equation (4) can be written as  

    𝐶𝑛−1

3

= (1 −
1

9·12) (1 −
1

9·22) (1 −
1

9·32) … {1 −
1

9·(
𝑛−1

3
)

2}      (6)                                                      

Writing  (𝑛 − 1)/3  as 𝑥 ,  the equation takes the form 

    𝐶𝑥 = (1 −
1

9·12) (1 −
1

9·22) (1 −
1

9·32) … {1 −
1

9·𝑥2}.                   (7) 

Or                                                              

  𝐶𝑥 = ∏ {1 − 1/(9𝑥2)}

(𝑛−1)/3

𝑥=1

. 

Or 

 𝐶𝑥 = 𝐶𝑥−1 · {1 − 1/(𝑛 − 1)2}, 

where 

  𝐶𝑥−1 = ∏ {1 − 1/(9𝑥2)}.

(𝑛−4)/3

𝑥=1

 

Symbol  ∏ {1 − 1/(9𝑥2)}
(𝑛−1)/3

𝑥=1
  denotes product of terms {1 −

1/(9𝑥2) },  when  𝑥  varies from bunch 1  to bunch (𝑛 − 1)/3 . 

Taking logarithm to the base of natural number 𝑒, 

𝑙𝑛  𝐶𝑥  = 𝑙𝑛 (1 −
1

9 · 12
) + 𝑙𝑛 (1 −

1

9 · 22
)

+ 𝑙𝑛 (1 −
1

9 · 32
) + ⋯ +  𝑙𝑛 (1 −

1

9 · 𝑥2
). 

This equation can also be written in the form 

 𝑙𝑛 𝐶𝑥 = ∑ 𝑙𝑛{1 − 1/(9𝑥2)}

(𝑛−1)/3

𝑥=1

 

and ∑ 𝑙𝑛{1 − 1/(9𝑥2)}
(𝑛−1)/3

𝑥=1
  can be approximated to 

𝑙𝑛 ∫ 𝑙𝑛{1 − 1/(9𝑥2} 𝑑𝑥. Therefore,  

     𝑙𝑛 𝐶𝑥 ≃ ∫ {1 − (1/9𝑥2)} 𝑑𝑥,                 (8)                                        

where ∑ 𝑙𝑛{1 − 1/(9𝑥2)}
(𝑛−1)/3

𝑥=1
 denotes sum of terms 𝑙𝑛 {1 −

1/(9𝑥2),  when 𝑥  varies from 1  to (𝑛 − 1)/3;   ∫ 𝑙𝑛 {1 − 1/

(9𝑥2)} 𝑑𝑥 denotes integration of 𝑙𝑛 { 1 − 1/(9𝑥2)} with respect 

𝑥 ; 𝑙𝑛 𝐶𝑥  denotes natural logarithm of correction factor for 𝑥 

bunches and symbol ≃ is a sign of approximation. It is submitted 

that since the method used here  for calculating value of 𝑛 

factorial and discovering Factorial Tripling Formula, are based 

on approximation  and also the fact that approximation of value 

of  𝑛 factorial, invokes exponential terms,  sign of approximation  

(≃)  will be used in this paper in stead of sign of equality (=).    

Assuming  number of bunches 𝑥 to be large, will mean value 

of term 1/(9𝑥2)  is small and, then  𝑙𝑛 { 1 − 1/(9𝑥2)}  can be 

expanded, 

𝑙𝑛 (1 −
1

9𝑥2
) ≃ − (

1

9𝑥2
+

1

162𝑥4
+

1

2187𝑥6
+ ⋯ 𝑢𝑝 𝑡𝑜  ∞). 

On integrating right hand side (RHS) with respect to 𝑥,  the 

equation takes the form,  

∫ ln (1 −
1

9𝑥2) 𝑑𝑥 ≃ (
1

9𝑥
+

1

486𝑥3 +
1

10935𝑥5 + ⋯  𝑢𝑝 𝑡𝑜 ∞) +  𝑏, 

where 𝑏  is constant of integration. At 𝑥 = 1 , logarithmic 

correction multiplier is 𝑙𝑛 (8/9). Therefore, 

𝑙𝑛
8

9
− (

1

9𝑥
+

1

486𝑥3
+

1

10935𝑥5
+ ⋯  𝑢𝑝 𝑡𝑜 ∞) ≃ 𝑏. 

On putting this value of 𝑏 in above equation and rearranging,  

    ∫ 𝑙𝑛 (1 −
1

9𝑥2) 𝑑𝑥 ≃ 𝑙𝑛
 8

9
+

1

9
(

1

𝑥
− 1) +

1

486
(

1

𝑥3 − 1) +

1

10935
(

1

𝑥5 − 1).                                                                          (9) 

Taking antilog,   

    𝐶𝑥 =
8

9
. 𝑒𝑥𝑝 {

1

9
(

1

𝑥
− 1) +

1

486
(

1

𝑥3 − 1) +
1

10935
(

1

𝑥5 − 1)},  (10) 

 where 𝑒𝑥𝑝 {
1

9
(

1

𝑥
− 1) +

1

486
(

1

𝑥3 − 1) +
1

10935
(

1

𝑥5 − 1)}  is 

written for exponential term  𝑒
{

1

9
(

1

𝑥
−1)+

1

486
(

1

𝑥3−1)+
1

10935
(

1

𝑥5−1)}
.                  
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B. Correction of smooth curve to match stair steps figure 

Fig.1  Plot of ln (1 −
1

9𝑥2
) with x 

        Plot of 𝑙𝑛 { 1 − 1/(9𝑥2)}  versus 𝑥, is a smooth curve as 

shown  in black in  Fig. 1, where number of bunches 𝑥 are taken 

on X-axis and value of 𝑙𝑛 { 1 − 1/(9𝑥2)}  on Y-axis. Quantities 

mentioned as −20, −40, −60 …  on negative Y-axis have 

multiplier 10−4 but it is not mentioned in the Fig. 1 for the sake 

of brevity. It is submitted that since 𝑥 changes in steps from 1 to 

2, 2 to 3, 3 to 4,…so on, therefore, actual graph must change in 

steps  and that requires the value of 𝑙𝑛 { 1 − 1/(9𝑥2)} must also 

change in steps, resulting in a figure like  stair steps as shown in 

red in Fig. 1. Since {1 − 1/(9𝑥2)}  is less than 1 , value of   

𝑙𝑛 { 1 − 1/(9𝑥2)} will always be  negative, therefore, it is plotted 

on negative Y axis and 𝑥 being positive is plotted  on positive X-

axis. If the areas of triangles above the curve are added 

algebraically, then smooth curve can approximate to stair steps 

figure. In that case , ∫ ln (1 −
1

9𝑥2) 𝑑𝑥  can be approximated 

to∑ 𝑙𝑛{1 − 1/(9𝑥2)}
(𝑛−1)/3

𝑥=1
. It is further submitted that portion 

of the curve shown as hypotenuse of the triangle between two 

consecutive bunches, is assumed as straight line for the purpose 

of calculation of area. In this way, area of individual triangle can 

be calculated as explained hereinafter. 

Area of triangle 𝐷𝐸𝐹 = half the area of rectangle 𝐷𝐶𝐸𝐹. Or area 

of triangle 𝐷𝐸𝐹 

=
 1

2
· 𝑙𝑛 { 1 −

1

9 · (52)
} −

1

2
· 𝑙𝑛 {1 −

1

9 · (42)
}. 

Therefore, correction for 4th to 5th bunch  

=
1

2
· 𝑙𝑛 { 1 −

1

9 · (52)
} −

1

2
· 𝑙𝑛 {1 −

1

9 · (42)
}. 

In this way, individual area of 2nd, 3rd, 4th …so on up to xth  bunch 

can be calculated.  

Correction for 2nd bunch  

=
1

2
· 𝑙𝑛 { 1 −

1

9 · (22)
} −

1

2
· 𝑙𝑛 {1 −

1

9 · (12)
}, 

correction for 3rd bunch  

=
1

2
· 𝑙𝑛 { 1 −

1

9 · (32)
} −

1

2
· 𝑙𝑛 {1 −

1

9 · (22)
}, 

correction for 4th bunch  

                 =
1

2
· 𝑙𝑛 { 1 −

1

9·(42)
} −

1

2
· 𝑙𝑛 {1 −

1

9·(32)
}, 

—————- so on —————————————————,                   

correction for xth  bunch  

=
1

2
· 𝑙𝑛 { 1 −

1

9 · (𝑥2)
} −

1

2
· 𝑙𝑛 { 1 −

1

9 · (𝑥 − 1)2
}. 

Resultant correction for all bunches is algebraic sum of above 

mentioned each correction. On summing up, this equals             

−(1/2) · 𝑙𝑛 (8/9) +  (1/2) · 𝑙𝑛 { 1 − 1/(9𝑥2)}. 

    It is pertinent to state that correction for 1st bunch is an initial 

condition and that equals 𝑙𝑛  (8/9) ,  therefore, it does not need 

correction and is not included while calculating resultant 

correction. Adding the resultant correction to correction already 

determined  by equation (10), improved correction is given by 

relation. 

 𝑙𝑛 𝐶𝑥 ≃ 𝑙𝑛
 8

9
+

1

9
(

1

𝑥
− 1) +

1

486
(

1

𝑥3
− 1) +

1

10935
(

1

𝑥5
− 1)  

−
1

2
· 𝑙𝑛

8

9
+

1

2
· 𝑙𝑛 (1 −

1

9𝑥2
). 

On simplifying,  

    𝑙𝑛 𝐶𝑥 ≃
1

2
𝑙𝑛

 8

9
+

1

2
𝑙𝑛 (1 −

1

9𝑥2) +
1

9
(

1

𝑥
− 1) +

1

486
(

1

𝑥3 − 1) +

1

10935
(

1

𝑥5 − 1).                 (11) 

On taking antilog, 

    𝐶𝑥 ≃ {
8

9
(1 −

1

9𝑥2
)}

1

2
. 𝑒𝑥𝑝 {

 1

9
(

1

𝑥
− 1) +

1

486
(

1

𝑥3
− 1) +

1

10935
(

1

𝑥5
− 1)},                            (12) 

 where  𝑒𝑥𝑝 {
 1

9
(

1

𝑥
− 1) +

1

486
(

1

𝑥3 − 1) +
1

10935
(

1

𝑥5 − 1)}  is                                                                                                                                   

written in place of  𝑒
{

 1

9
(

1

𝑥
−1)+

1

486
(

1

𝑥3−1)+
1

10935
(

1

𝑥5−1)}
. 

C.  Correction due to curvature of curve between successive 

bunches 

    For improving approximation, compensation has already been 

made by adding areas of half rectangles pertaining to each bunch 

but actual requirement is area above the curve, which we assumed  

as triangles. But in fact, these are not  triangles as the curve is not 
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a straight line but   has a curvature. Our assumption made in para  

II B “Portion of the curve shown as hypotenuse of the triangle 

between two consecutive bunches is assumed as straight line for 

the purpose of calculation of area” yields error as the curvature 

has not been taken into consideration, while calculating areas. On 

inspection of the rectangle 𝐺𝑀𝐼𝐽 shown enlarged in Fig. 1, it is 

observed, area of triangle 𝐺𝐽𝐼 was considered but in fact, the area 

enclosed by curve 𝐺𝐼  and straight lines 𝐺𝐽  and 𝐼𝐽  were to be 

considered. That means, there still exists an error due to curvature 

and that also needs  correction. To compensate the error due to 

curvature, a quantity exp{−.0178(1 − 1/𝑥3)} is multiplied to 

equation (12) to further reduce the error. It is pertinent to explain 

that this assumed correction   exp{−.0178(1 − 1/𝑥3)},  when 

multiplied with correction given by equation (12), approximates 

best to actual correction as is evident from the data given in  Table 

1. That proves assumed additional correction approximates with 

the required correction due to  curvature. On application of this 

correction due to curvature, equation (12)  gets modified a 

    𝐶𝑥 ≃ {
8

9
(1 −

1

9𝑥2)}

1

2
. 𝑒𝑥𝑝 {

 1

9
(

1

𝑥
− 1) + (

1

486
+ .0178) (

1

𝑥3 −

1) +
1

10935
(

1

𝑥5 − 1)}                    (13) 

D.  Calculated correction multiplier using equation (13) 

versus ideal correction multiplier using equation (4) 

Table 1 Ideal correction multiplier and calculated correction multiplier 

Number of 

bunches 

Ideal correction 

multiplier by 

equation (4) 

Calculated 

correction multiplier 

by equation (11) 

1 8/9 8/9 

2  . 8641975308642 . 8641607472088 

3 . 85352842554489 . 85351678483392 

4 . 84760114481194 . 84759878677795 

5 . 84383402861277 . 84383546137804 

6 . 84122960259853 . 84123281665964 

7 . 83932205247926 . 83932620106705 

8 . 83786489613815 . 83786957800523 

9 . 83671556157555 . 83672056824456 

10 . 83578587761824 . 83589109259135 

11 . 83495672496188 . 835023751722749 

12 . 83431246822965 . 83437954378758 

13 . 8337639393222 . 83383104299365 

14 . 8332912840278 . 833335840285489 

15 . 83287978215914 . 83294690788098 

16 . 83251828919814 . 83258541649202 

17 . 83219821296238 . 83226533838644 

18 . 83191282262872 . 83197994396808 

19 . 83165677066731 . 83172388651972 

20 . 83142575489768 . 8314928644054 

40000 . 82699564030109 . 8270013812 

4000000 . 82699336610472 . 826999107 

To check effectiveness of correction multiplier determined by 

equation (13), its values and those of ideal correction multipliers 

given by equation (4) for bunches 1 to 20 on lower side and  
40000 and 4000000  on higher side, are given in the Table 1. 

The Table 1 shows, maximum error using equation (13) is less 

than .008 percent. Actual correction multipliers for bunches 

40000  and 4000000  have been determined with the help of 

calculators as bunches being quite large, it is difficult to find 

their values using equation (4).  

III.  FACTORIAL TRIPLING FORMULA   

    Referring to equation (5),  

𝑛! = (𝐶𝑛−1
3

) (3𝑛−1) {1 · 2 · 3 · … · (
𝑛 − 7

3
) (

𝑛 − 4

3
) (

𝑛 − 1

3
 )}

3

 

and writing number of bunches (𝑛 − 1)/3  as 𝑥, 

    (3𝑥 + 1)! ≃ 𝐶𝑥 · 33𝑥 · (𝑥!)3,                           (14)                                                              

where 𝐶𝑥  is given by equation (13). On rearranging, 

    𝑥! ≃
1

3𝑥 . {
(3𝑥+1)!

𝐶𝑥
}

1/3

               (15) 

Table II Approximation of (3𝑥 + 1)! from given 𝑥! and associated error 

𝑥! (3𝑥 + 1)! 
according 

to formula 

(14) 

(3𝑥 + 1)! 
actual 

Percentage 

error 

1! 24 4! = 24 0.00000 

2! 5039.78548 7! = 5040 −0.00425 

3! 3628750 10! = 3628800 −1.36383401
× 10−3 

4! 6227003480 13! = 6227020800 −2.78200897
× 10−4 

5! 2.09228254
× 1013 

16!
= 20922789888000 

1.69792307
× 10−4 

6! 1.21645565
× 1017 

19!
= 1.216451 × 1017 

3.82067047
× 10−4 

8! 1.55112967
× 1025 

25!
= 1.551121 × 1025 

5.58785444
× 10−4 

10! 8.22387381
× 1033 

31!
= 8.22283865
× 1033 

1.25887474
× 10−4 

12! 1.3763843
× 1043 

37!
= 1.37637531
× 1043 

6.53260109
× 10−4 
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15! 5.5026592
× 1057 

46!
= 5.50262216
× 1057 

6.7311102
× 10−4 

20! 5.07583692
× 1083 

61!
= 5.07580214
× 1083 

6.85254661
× 10−4 

500! 7.22285883
× 104117 

1501!
= 7.22808693
× 104117 

6.87128875
× 10−4 

5000! 4.1202018
× 1056133 

15000!
= 4.12017321
× 1056133 

6.94165027
× 10−4 

From Table II, it is clear that percentage error associated with 

formula (14) is few in thousand. 

    Example: Let us find out value of  7! when it is given, 2! equals 

2. Here 𝑥 = 2 and 3𝑥 + 1 is 7. Then 7! ≃ (𝐶2){33(2)}(2!)3 using 

equation (14). Correction multiplier for two bunches is applied 

since number of terms 7 makes 2 bunches excluding first term 1, 

𝐶2 = (. 8641607472088), using equation (13). Therefore,  7! ≃

𝐶2. {(2!). 32}3 ≃ (. 8641607472088). (5832) ≃

5039.7854777217. Actual value of 7! = 5040.   Error is  

−.004256 percent. 

That proves if 𝑥!, where  integer 𝑥 > 0, is given,  then (3𝑥 + 1)! 

can be approximated to  𝐶𝑥 · 33𝑥 · (𝑥!)3, where 𝐶𝑥  is given by 

equation (13).                                                                                 

A. Factorial tripling formula when 𝑥 → ∞  

           When 𝑥 → ∞ or is extremely large, 1/𝑥 can be 

neglected,  then equation (13) transforms to  

𝐶∞ ≃
2

3
· √2 · 𝑒𝑥𝑝 {−

 1

9
− (

1

486
+ .0178) −

1

10935
},  

where 𝐶∞ is correction multiplier for very very large bunches 

and    has  constant value of  . 8269990839956686.  On 

substituting this value of 𝐶∞  in equation (14), we get (3𝑥 +

1)! ≃ 𝐶∞ · {3𝑥 · (𝑥!)}3 or 

        (3𝑥 + 1)! ≃ (. 8269990839956686) · {3𝑥 · (𝑥!)}3     (16) 

IV. APPROXIMATION OF FACTORIAL 

    Examination of factorial tripling formula  given by relation  

𝑥! ≃
1

3𝑥
· {

(3𝑥 + 1)!

𝐶𝑥

}

1/3

  , 

reveals that  𝑥 appears in right hand side as well as left hand side, 

therefore, value of 𝑥! can help approximate the value of (3𝑥 + 1)! 

and on approximation of value (3𝑥 + 1)!, value of (9𝑥 + 4)! can 

be approximated. 

     𝑥! ≃
1

3𝑥 · {
(3𝑥+1)!

𝐶𝑥
}

1

3
≃ (

1

3𝑥) [(
1

𝐶𝑥
) (

1

33𝑥+1) {
(9𝑥+4)!

𝐶3𝑥+1
}

1
3
]

1
3

, 

where 𝐶3𝑥+1 is a correction multiplier for 3𝑥 + 1 bunches. From 

(9𝑥 + 4)!,  value of (27𝑥 + 13)! can be approximated and so on. 

If given 𝑥 is 1, value of 4!, 13!, 40! …  𝑛!  can be approximated, 

when 𝑛 is given by telescopic  series 

𝑛 = 1 + 31 + 32 + ⋯ + 3𝑘 

and 𝑘 is an integer  1, 2, 3, … 

A. Geometrical progression with first term 1  and common 

ratio  3 

    Consider a geometrical progression GP or telescopic series 

with common ratio 3  and first term 1 . That is 𝑛 = 1 + 31 +

32 … 3𝑘, where 𝑛 is its sum, 𝑘 + 1 are number of terms of this GP 

and 𝑘 can have any value  1, 2, 3, … Value of 𝑘 equal to 0, is not 

included as it leads to 𝑛 equal to 1, which has value of its factorial 

as 1, requiring no calculation. 

    On summing up the series, 𝑛 can be written  

 𝑛 =
1

2
· (3𝑘+1 − 1) = 1 + 31 + 32 … 3𝑘             (17) 

Or 

    2𝑛 + 1 = 3𝑘+1                                                                     (18) 

    If value of factorial 𝑥 is given and 𝑥 is a positive integer other 

than 1,  then factorial 𝑛,  when 𝑛  has any value of the forms 

(3𝑥 + 1), (9𝑥 + 4), (27𝑥 + 13), …  so on upto {3𝑘𝑥 + (3𝑘 −

1)/2}, can be approximated. Values of 𝑛, when given 𝑥 = 1 and 

𝑘 varies from 4 to 15,  are mentioned in Table III as illustrations.   

Table III  Number of terms 𝑘 of GP  and  its sum (𝑛) 

 𝑘 𝑛 𝑘 𝑛 𝑘 𝑛 

1 4 6 1093 11 265720 

2 13 7 3280 12 797161 

3 40 8 9841 13 2391484 

4 121 9 29524 14 7174453 

5 364 10 88573 15 21523360 

 These are the values of  𝑛  for which their factorials can be 

approximated, if given factorial is 1.   

B. Recursive nature of Factorial Tripling Formula 

        If 𝑛 is given by equation (17), formula for 𝑛! can be derived 

using recursive nature of factorial tripling formula of equation 

(14). Applying this formula successively when given 𝑥 = 1, 

4! ≃ 33. 𝐶1
  

13! ≃ 𝐶4
 . 33(4). (33. 𝐶1

 )3 ≃ 𝐶4
 . 𝐶1

3. 33(4). 332
 

40! ≃ 𝐶13
 . 33(13). {𝐶4

 . 33(4). (33. 𝐶1
3)3}

3

≃ 𝐶13
; . 𝐶4

3 
. 𝐶1

32
. 340−1. 340−4. 333

 

121! ≃ [𝐶40
3 . 3120. {𝐶13

3 . 𝐶4
32

. 𝐶1
33

. 33(13). 332(4). 333(1)}
3

] 

≃ 𝐶40
 . 𝐶13

3 
. 𝐶4

32
. 𝐶1

33
. 3121−1. 3121−4. 3121−13. 381 

      … … … … … … … … … … … … … … … … … … … … 𝑠𝑜 𝑜𝑛. 

By mathematical induction,  

𝑛!  ≃ (𝐶𝑛−1
3

 · 𝐶𝑛−4
32

3 
· 𝐶𝑛−13 

33

32
. . 𝐶1

3𝑘−1
) · 3{(𝑛−1)+(𝑛−4)+(𝑛−13)+...+3𝑘} 

≃ (𝐶𝑛−1
3

 · 𝐶𝑛−4
32

3 
· 𝐶𝑛−13

33

32
 … 𝐶1

3𝑘−1
) · 3{𝑘(𝑛+

1
2

)−
3
4

(3𝑘−1)}
 

Let cumulative correction multiplier be 𝐶 given  by relation 

𝐶 = (𝐶𝑛−1
3

 · 𝐶𝑛−4
32

3 
· 𝐶𝑛−13

33

32
 … 𝐶1

3𝑘−1
), 

and on substituting 3𝑘 with (2𝑛 + 1)/3 using equation (18), 
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               𝑛! ≃ (
2𝑛+1

3
)

𝑛+1/2

· 3
(

1−𝑛

2
)
 

On simplification ,  

    𝑛! ≃ 𝐶 · √
(2𝑛+1)2𝑛+1

33𝑛                                                            (19)        

Hence if 𝑛  is given by equation (18) i.e.  𝑛 = (3𝑘+1 − 1)/2 

where 𝑘  is any positive integer  1, 2, 3, …,  then 𝑛!  can be 

approximated using equation (19) provided  𝑛 must be an integer 

4, 13, 40, 121, … , (3𝑘+1 − 1)/2. 

Notwithstanding approximation of factorial of these integers, if 

value of 𝑥!  is given, approximation of factorial of integers 

(3𝑥 + 1)!, (9𝑥 + 4)!, (27𝑥 + 13)!, … {3𝑘𝑥 + (3𝑘 − 1)/2}  can 

also be found, where  𝑘 is any integer  1, 2, 3,…  That means 

factorial of any integer of the form {3𝑘𝑥 + (3𝑘 − 1)/2} can be 

approximated if 𝑥! is given and 𝑘 is any integer 1, 2, 3, … 

C. Error associated with factorial approximation formula 

(15) as compared to Stirling Formula 

Percentage errors associated with factorials when computed 
using equation (14) and percentage errors associated,  when 

computed, using Stirling formula  𝑛! ≃ √2𝑛 · π · (𝑛/𝑒)𝑛,  are 

given in Table IV.   

Table IV Comparison of errors equation  (15) and  Stirling Formula                      
𝑛 Approxima

tion of 𝑛! 
using 

formula 

(14) 

Percentage 

error using 

formula 

(14) 

Approxima

tion of 𝑛! 
using 

Stirling 

formula 

Percentage 

error using 

Stirling 

formula 

4 24 0.000 23.50617513 −02.57 

13 622700348 −2.78200897
× 10−4 

6.18723948
×  109 

−0.638850039 

40 8.15913874
× 1047 

−1.7268532
× 10−4 

8.14217264
× 1047 

−0.2081121396 

121 8.09431269
× 10200 

−1.74998877
× 10−4 

8.08872587
× 10200 

−0.06884665643 

    It is clear from Table IV that formula (14) yields percentage 

error few in ten thousands whereas Stirling formula yields few in 

hundred. Formula (19) has better accuracy than that of  Stirling 

Formula.                                                         

V. RESULTS AND CONCLUSIONS  

   Overview of the paper makes amply clear  that multiplying 

terms,     2, 3, … , (𝑛 − 2), (𝑛 − 1), (𝑛) of 𝑛!  excluding 1 ,  are 

grouped in three consecutive integers, forming  (𝑛 − 1)/3 

bunches. In such arrangement, a bunch has consecutive integers 

𝑎 − 1, 𝑎, and 𝑎 + 1,  where 𝑎 is of the form 3𝑏 and integer 𝑏 ≥

1. Geometric mean of the terms in the bunch is (𝑎3 − 𝑎)1/3 and 

their arithmetic mean is (1/3){(𝑎 − 1) + (𝑎) + (𝑎 + 1)} or 𝑎. It 

is obvious, AM ‘𝑎’ of the bunch is more than GM (𝑎3 − 𝑎)1/3.  

Our endeavour is to approximate AM to GM. It is accomplished  

by discovering a function 𝐶𝑥 called correction factor or multiplier 

and  this function 𝐶𝑥  varies with 𝑥,  where integer 𝑥 ≥ 1  is 

number of bunches containing three consecutive integers. Each 

bunch can, then be replaced with cube of its AM.  Factorial of 

integer  𝑛  has  (𝑛 − 1)/3 bunches and each bunch is replaceable 

with cube of its AM multiplied  with its correction factor. Product 

of each (𝐴𝑀)3  and  their  correction factors, yields 

approximation to value of factorial.  It is also observed that each 

multiplying  (𝐴𝑀)3  have a  common multiplier 33. Since there 

are (𝑛 − 1)/3  such AM’s, therefore, that gives rise to cumulative  

multiplier of 3𝑛−1 . Mathematically , 𝑛! , then can be given by 

relation  

𝑛! ≃ (𝐶𝑛−1
3

) · (3𝑛−1). {(
𝑛 − 1

3
) !}

3

 

Assuming  (𝑛 − 1)/3 = 𝑥,  then above said relation can be 

written (3𝑥 + 1)! ≃ 𝐶𝑥. 33𝑥 . (𝑥!)3,  where 𝐶𝑥  is a correction 

factor for 𝑥 bunches.  The value of 𝐶𝑥 is given by relation  

𝐶𝑥 = [(1 −
1

32
) · (1 −

1

62
) · (1 −

1

92
) … {1 −

1

(3𝑥)2
}] 

and this relation on taking logarithm of both sides can be written 

        ln Cx = ∑ ln{1 − 1/(9x2)}.
(n−1)/3

x=1
  

which can be approximated to ∫ ln (1 −
1

9𝑥2) 𝑑𝑥.   Assuming 𝑥 to 

be large, expanding 𝑙𝑛 (1 −
1

9𝑥2), integrating it and, then   taking 

its antilog, yields 

    𝐶𝑥 =
8

9
. 𝑒𝑥𝑝 {

1

9
(

1

𝑥
− 1) +

1

486
(

1

𝑥3 − 1) +
1

10935
(

1

𝑥5 − 1)}. 

Value of 𝐶𝑥 still needs further corrections on two counts. First 

𝑥  varies in steps of 1  to 2, 2  to 3, 3  to 4 , so on whereas 𝐶𝑥 

given by above said equation when plotted, provides   smooth 

curve. Second,  the plot of 𝑙𝑛 (1 −
1

9𝑥2) with 𝑥 is not a straight 

line but has a curvature between between steps. On application of 

corrections due to above said  reasons, resultant correction 

obtained  is 

𝐶𝑥 ≃ {
8

9
(1 −

1

9𝑥2
)}

1
2

. 𝑒𝑥𝑝 {
 1

9
(

1

𝑥
− 1)

+ (
1

486
+ .0178) (

1

𝑥3
− 1)

+
1

10935
(

1

𝑥5
− 1)}               

    Application of this resultant  correction, provides improved 

approximation to Factorial Tripling Formula 

(3𝑥 + 1)! ≃ 𝐶𝑥. 33𝑥. (𝑥!)3. 
This formula is recursive in nature and if applied successively,  

can approximate factorial of a positive integer 𝑛, if 𝑛 is given by 

relation  

𝑛 = 30 + 31 + 32 + 33 … + 3𝑘 = (3𝑘+1 − 1)/2, 
where 𝑘 is a positive integer 1, 2, 3, … In that case, 

                  𝑛! ≃ 𝐶 · √
(2𝑛+1)2𝑛+1

33𝑛  

where 𝐶  is cumulative correction multiplier given  by relation 

          𝐶 = (𝐶𝑛−1

3

 · 𝐶𝑛−4

32

3 
· 𝐶𝑛−13

33

32
 … 𝐶1

3𝑘−1
) 

and 𝐶𝑛−1

3

 , 𝐶𝑛−4

32
 , 𝐶𝑛−13

33
, … 𝐶1  are correction multipliers for (𝑛 −

1)/3, (𝑛 − 4)/32, (𝑛 − 13)/33, … ,1  bunches. In addition to 

above, if value of 𝑥!,  where integer 𝑥 ≥ 1,  is given, 

approximation of factorial of any integer of the form {3𝑘𝑥 +
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(3𝑘 − 1)/2}, where integer 𝑘 > 0,  can be made, using recursive 

relation (3𝑥 + 1)! ≃ 𝐶𝑥 . 33𝑥. (𝑥!)3.  
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