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Abstract: The classical solution for replacement problem requires
complete knowledge about the component life distribution. In this paper,
suitable estimator of the age replacement strategy has been suggested
and it is shown that the estimator is strongly consistent. A simulation
study has been carried out to illustrate the efficiency of the estimator.
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I. INTRODUCTION

Consider a system which is subject to failure due to failure of the components.
The components can be replaced suitably and instantaneously in order to keep
the system functional. Let the life distribution function of the component be
F : R+ → [0, 1), which is absolutely continuous having density function f
and survival function F̄ ≡ 1 − F . Generally, a replacement policy involves
routine replacement (on failure) and preventive replacement (in anticipation
of failure). The mostly discussed replacement policies are the age replacement
policy and the block replacement policy (cf. Arunkumar (1972), Ascher and
Feingold (1984), Rigdon and Basu (2000)). In age replacement policy (see
Bergman (1979), Frees and Ruppert (1985), Ingram and Scheaffer (1976),
Jiang and Ji (2002), Lim, Qu and Zuo (2016), Park, Jung and Park (2015) and
Yeh, Chen and Chen (2005)), a component is replaced by a new component
of the same type on failure or after a specified age T, whichever is earlier. In
periodic replacement policy, replacement is done by a new equipment of the
same type at specified equidistant points of time T, 2T, ... and only minimal
repair is undertaken for any intervening failure in order to keep the system
functional. By minimal repair we mean the system will be repaired in such a
way that the failure rate of the system will remain same as that just prior to
its failure. Roy and Basu (1993) have considered the estimation of age and
periodic replacement policies, where they have taken only the replacement cost
against failure and the planned replacement cost. Here we have considered
the estimation of the age replacement policy taking maintenance cost of the
system at different points of time into consideration, since it plays an important
role in replacing the system. In most of the cases, it happens that after certain
age of the system, though the system is functioning, its maintenance cost goes
up in such a way that it becomes economical to replace the system.

Let N(t) denote the number of shocks/failures occurring in [0, t]. We
assume that {N(t), t ≥ 0} is a point process with N(0) = 0 and N(t) <∞
for all t ≥ 0 almost surely. Let τ be a stopping time with respect to the
process {N(t), t ≥ 0} after which the system must be replaced. Further
N(t) is assumed to have sample paths with unit steps at points τ1, τ2, ...
with 0 < τ1 < τ2 < ... and τ0 = 0. We also assume that N(t) and τ are
independent. If the costs involved are due to incoming shocks, maintenance
of the system, replacement of the system etc., it seems economical to replace
the system at time min(t, τ) for some optimally chosen t.

Define
g(i, t) = cost per unit time of maintenance of the system at time t ∈
[τi, τi+1), i = 1, 2, . . .
R1 = Replacement cost of the system if it is replaced before failure.
R2 = Replacement cost of the system if it is replaced at failure.
Then the average expected cost per unit time (cf. Barlow and Proschan

(1996))is given by

C(t) =
R1 + ψ(t)

φ(t)
,

where
ψ(t) = (R2 −R1).P (τ ≤ t) +

∫ t
0 E

[
g(N(u), u)I(τ>u)

]
du,

φ(t) = E(t ∧ τ) =
∫ t
0 P (τ > u)du,

and I(·) is the indicator function. If τ has distribution function F and
density function f , then d

dt
C(t) = 0 gives

L(T )
def
=

[∫ T

0
F̄ (u)du

] [
f(T ) + E [g(N(T ), T )] F̄ (T ).

λ

R1

]
−[

λ+ F (T ) +
λ

R1

∫ T

0
E [g(N(u), u)] F̄ (u)du

]
F̄ (T )

= 0, (1)

where λ = R1
R2−R1

(> 0). Thus, the optimal age replacement time T0 is
given by L(T0) = 0.

In Section 2 of this paper, we find Tn, an estimator of T0 using kernel
estimation method when the maintenance cost is linear and show that Tn is
a strongly consistent estimator of T0 if the underlying distribution is IFR
(Increasing in Failure Rate). The same type of result is done in Section 3
when the maintenance cost is not linear. In Section 4 we present a simulation
study to illustrate the workability of our estimation procedure.

II. ESTIMATION AND THE PROPERTIES OF THE ESTIMATOR
WHEN MAINTENANCE COST IS PIECEWISE CONSTANT

Let f(t) be the density function and F̄ (t) be the survival function of the
random variable X . Then the failure rate (or hazard rate) function rF (t) is
defined as rF (t) =

f(t)

F̄ (t)
, for all t such that F̄ (t) > 0. The random variable

X is said to be IFR (Increasing in Failure Rate) if rF (t) is increasing in t
(cf. Barlow, Marshall and Proschan (1963)).

Let X1, X2, . . . be a sequence of independent and identically distributed
random variables having distribution function F , survival function F̄ , and
fn(x) be a continuous kernel estimator of the uniformly continuous density
function f(x) corresponding to F . Consider a kernel function K(x) such
that

(i) K(x) is uniformly continuous on R = (−∞,∞).
(ii) K(x) is of bounded variation on R.

(iii) There exists a ζ such that K(x) = 0 for |x| > ζ.
(iv)

∫ ζ
−ζ K(x)dx = 1.

(v)
∫ ζ
−ζ |K(x)|dx <∞.

(vi)
∫ ζ
−ζ |x ln |x||1/2|dK(x)| <∞.

Define fn(x) as

fn(x) =
1

nbn

n∑
i=1

K

[
x−Xi
bn

]
,
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where bn(> 0), the window width (or bandwidth) is taken as the nth term of
the sequence of positive numbers assumed to satisfy the following conditions
(cf. Silverman (1978)).

(a) bn → 0 as n→∞.
(b) nbn

lnn
→∞ as n→∞.

For further discussion on kernel density estimation, one can refer to Akaike
(1954), Prakasa Rao (1983), Rosenblatt (1956), Schuster (1969), Van Ryzin
(1969) to name a few.

Let us take g(i, T ) = α + iβ, for i = 1, 2, ... with T ≥ 0 and
{N(t), t ≥ 0}, be a point process with E[N(t)] = δt. It is to be noted
that we do not assume any specific stochastic process for N(t). Here the
maintenance cost is linear in i. For T ∈ [τi, τi+1), g(i, T ) = α+ iβ. This
means, in each such interval, g(i, T ) is constant. That is, it is linear in i, but
constant in T . In other words, the maintenance cost is a piecewise constant
function. Then (1) reduces to

L(T ) =

[∫ T

0
F̄ (u)du

] [
f(T ) + (α+ βδT )F̄ (T ).

λ

R1

]
−[

λ+ F (T ) +
λ

R1

(
α

∫ T

0
F̄ (u)du+ βδ

∫ T

0
uF̄ (u)du

)]
F̄ (T )

= 0. (2)

Note that T =∞ is always a solution to (2).
Define

L∗(T ) =
L(T )

F̄ (T )

If F is IFR, L∗(T ) is increasing in T and must have atmost one finite root.
Write

Fn(x) = 1− F̄n(x) =

∫ x

0
fn(t)dt

and

Ln(T ) =

[∫ T

0
F̄n(u)du

] [
fn(T ) + (α+ βδT )F̄n(T ).

λ

R1

]
−[

λ+ Fn(T ) +
λ

R1

(
α

∫ T

0
F̄n(u)du+ βδ

∫ T

0
uF̄n(u)du

)]
.F̄n(T ) = 0. (3)

Let

Tn
def
= inf {T : Ln(T ) = 0}
= min {T : Ln(T ) = 0} . (4)

Theorem 1: If F is IFR having uniformly continuous density function
f(·), then Tn, defined in (4), is a strongly consistent estimator of the
optimal age replacement policy T0.

Proof: Define

δn = sup {|fn(x)− f(x)| : x ≥ 0} . (5)

Observe that

|Fn(x)− F (x)| ≤ xδn. (6)

Case I: Let T0 <∞. First we show that the sequence {Tn}, defined in (4)
is bounded above. For this, if possible, let {Tn} be unbounded. So, for every
positive number M ,

Tn > M infinitely often (i.o.).

This further gives
Ln(M) 6= 0 i.o.

But Ln(0) = −λ(< 0). So, Ln(M) < 0 i.o. for every M > 0, since Ln(·)
is continuous. Thus we have, for every M(> 0), there exists an increasing
sequence of indices {nk} such that for every k,[∫M

0 F̄nk (u)du
] [
fnk (M) + (α+ βδM) F̄nk (M). λ

R1

]
−[

λ+ Fnk (M) + λ
R1

(
α
∫M
0 F̄nk (u)du+ βδ

∫M
0 uF̄nk (u)du

)]
F̄nk (M)

< 0.
Taking limit as k →∞, we have[∫M

0 F̄ (u)du
] [
f(M) + (α+ βδM) F̄ (M). λ

R1

]
−

[
λ+ F (M) + λ

R1

(
α
∫M
0 F̄ (u)du+ βδ

∫M
0 uF̄ (u)du

)]
F̄ (M) < 0.

Or, for every M(> 0),

φ(M)
def
=

[
r(M) + (α+ βδM)

λ

R1

] ∫ M

0
F̄ (u)du−[

λ+ F (M) +
λ

R1

(
α

∫ M

0
F̄ (u)du+ βδ

∫ M

0
uF̄ (u)du

)]
≤ 0, (7)

where r(x) is the failure rate corresponding to F (x) at the point x. Taking
derivative of the left-hand side of (7) with respect to M , we have

φ′(M) =

[
r′(M) +

βδλ

R1

] ∫ M

0
F̄ (y)dy

≥ 0,

since F is IFR. If T0 be a solution of (2), then φ(M) > 0 for all M > T0

, which contradicts (7). Thus, there exists an M(> 0) such that Tn ≤ M
for all n.

Now,

|L(Tn)| = |L(Tn)− Ln(Tn)|
≤ t1n + t2n + ...+ t5n,

where

t1n =

∣∣∣∣f(Tn)

∫ Tn

0
F̄ (u)du− fn(Tn)

∫ Tn

0
F̄n(u)du

∣∣∣∣ ,
t2n =

∣∣F (Tn)F̄ (Tn)− Fn(Tn)F̄n(Tn)
∣∣ ,

t3n = λ |F (Tn)− Fn(Tn)| ,

t4n =
βδλTn

R1

∣∣∣∣F̄ (Tn)

∫ Tn

0
F̄ (u)du− F̄n(Tn)

∫ Tn

0
F̄n(u)du

∣∣∣∣ ,
and

t5n =
βδλ

R1

∣∣∣∣F̄ (Tn)

∫ Tn

0
uF̄ (u)du− F̄n(Tn)

∫ Tn

0
uF̄n(u)du

∣∣∣∣ .
Note that

t1n =

∣∣∣∣[f(Tn)

∫ Tn

0
F̄ (u)du− fn(Tn)

∫ Tn

0
F̄ (u)du

]
+

[
fn(Tn)

∫ Tn

0
F̄ (u)du− fn(Tn)

∫ Tn

0
F̄n(u)du

]∣∣∣∣
=

∣∣∣∣(f(Tn)− fn(Tn))

∫ Tn

0
F̄ (u)du+

fn(Tn)

∫ Tn

0

(
F̄ (u)− F̄n(u)

)
du

∣∣∣∣
≤ δn

∫ Tn

0
F̄ (u)du+ δnfn(Tn)

∫ Tn

0
udu

≤ δn [µ+Mfn(Tn)Tn]

≤
[
µ+M

(
1 + λ+

λM2δβ

R1

)]
δn.

The first inequality follows from (5) and (6), second inequality follows due
to the fact that

∫ Tn
0 F̄ (u)du ≤ µ =

∫∞
0 F̄ (u)du and Tn ≤ M for all n,

whereas the last inequality can be obtained as under-
Since Tn is a solution of (3), we have

fn(Tn)

∫ Tn

0
F̄n(u)du = F̄n(Tn) [λ+ Fn(Tn)+

βδλ

R1

∫ Tn

0
uF̄n(u)du−

βδλTn

R1

∫ Tn

0
F̄n(u)du

]
,

which is equivalent to

fn(Tn)Tn ≤ λ+ Fn(Tn) +
βδλ

R1

∫ Tn

0
uF̄n(u)du−

βδλTn

R1

∫ Tn

0
F̄n(u)du

≤ 1 + λ+
βδλ

R1
T 2
n −

βδλ

R1
F̄n(Tn)T 2

n

≤ 1 + λ+
βδλ

R1
M2.
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t2n =
∣∣F (Tn)− F 2(Tn)− Fn(Tn) + F 2

n(Tn)
∣∣

≤ |F (Tn)− Fn(Tn)|+
|Fn(Tn) + F (Tn)||Fn(Tn)− F (Tn)|

≤ Tnδn + 2Tnδn

≤ 3Mδn.

t3n ≤ λMδn.

t4n ≤
βδλM

R1

[∣∣F̄ (Tn)− F̄n(Tn)
∣∣ ∫ Tn

0
F̄ (u)du+

F̄n(Tn)

∫ Tn

0
|F̄ (u)− F̄n(u)|du

]
≤

βδλM

R1

[
Tnδn

∫ Tn

0
F̄(u)du+ F̄n(Tn)Tnδn

]
≤

βδλM2

R1
δn

[∫ Tn

0
F̄ (u)du+ F̄n(Tn)

]
≤ M2δn

λβδ

R1
(µ+ 1) .

t5n ≤
λβδ

R1

[∣∣F̄ (Tn)− F̄n(Tn)
∣∣ ∫ Tn

0
uF̄ (u)du+

F̄n(Tn)

∫ Tn

0
u|F̄ (u)− F̄n(u)|du

]
≤

λβδ

R1

[
Mδn

∫ Tn

0
uF̄ (u)du+ δnF̄n(Tn)

∫ Tn

0
u2du

]
≤

λβδTn

R1
δn

[
M

∫ Tn

0
F̄ (u)du+ F̄n(Tn)

T 2
n

3

]
≤ M2δn

λβδ

R1

(
µ+

M

3

)
.

Thus,
0 ≤ |L(Tn)| ≤ θδn,

where θ <∞ and is independent of n. Hence, by Theorem A of Silverman
(1978), we have

lim
n→∞

|L(Tn)| = 0 a.e.

Now, if we take {Tnk}, a convergent subsequence of {Tn}, the boundedness
of {Tn}, together with the continuity of L∗(·), gives

L∗
(

lim
k→∞

Tnk

)
= lim
k→∞

L∗ (Tnk ) =
limk→∞ L (Tnk )

limk→∞ F̄ (Tnk )
= 0 = L∗ (T0) .

Thus, T0 being the unique root of L∗(T ) = 0, we have

lim
k→∞

Tnk = T0 a.e.

Further, as the limit is independent of the subsequence {Tnk}, we have

P

(
lim
k→∞

Tnk = T0

)
= 1.

Case II: T0 = ∞. If possible, let {Tn} do not approach infinity as n tends
to infinity. Then

Tn ≤M i.o. for some M > 0.

So, we can find a convergent subsequence {Tnk} such that

Tnk → A <∞.

Thus,

L∗(A) = L∗
(

lim
k→∞

Tnk

)
= lim

k→∞
L∗ (Tnk )

=
limk→∞ L (Tnk )

limk→∞ F̄ (Tnk )

= 0,

since L∗ is continuous. This contradicts our hypothesis that T0 =∞. Hence
the result.

III. ESTIMATION AND THE PROPERTIES OF THE ESTIMATOR
WHEN MAINTENANCE COST IS NOT PIECEWISE CONSTANT

In practice maintenance cost need not increase linearly. To cope up this
situation, in this section we analyze the case when the maintenance cost is a
quadratic function. The general case when the maintenance cost is a higher
order polynomial can be analyzed similarly.

Let us take g(i, T ) = α + iβ + i2γ, for i = 1, 2, ... with T ≥ 0 and
{N(t), t ≥ 0}, a point process with E[N(t)] = δt. Here α, β and γ are
nonnegative because of the following reason:

Let f(x) = a+bx+cx2 > 0 for all x > 0 and f(x) be nondecreasing
for all x. Then f ′(x) = 2cx + b ≥ 0 ⇒ b ≥ 0 (otherwise, as
x→ 0, f ′(x) < 0). Further, f(x) > 0 for all x > 0 ⇒ b2 < 4ac ⇒ a
and c will be of same sign. Again, f(0) ≥ 0 ⇒ a ≥ 0. Hence a, b, c ≥ 0.

Now (1) reduces to

L(T ) =

[∫ T

0
F̄ (u)du

] [
f(T ) +

{
α+ (β + γ)δT + γ(δT )2

}
.F̄ (T ).

λ

R1

]
−
[
λ+ F (T ) +

λ

R1

(
α

∫ T

0
F̄ (u)du+

(β + γ)δ

∫ T

0
uF̄ (u)du+ γδ2

∫ T

0
u2F̄ (u)du

)]
F̄ (T )

= 0. (8)

Define
L∗(T ) =

L(T )

F̄ (T )

Further, if F is IFR, L∗(T ) being an increasing function of T , must have
atmost one finite root. Define

L∗n(T ) =

[∫ T

0
F̄n(u)du

] [
fn(T ) +

{
α+ (β + γ)δT + γ(δT )2

}
.F̄n(T ).

λ

R1

]
−
[
λ+ Fn(T ) +

λ

R1

(
α

∫ T

0
F̄n(u)du+

(β + γ)δ

∫ T

0
uF̄n(u)du+ γδ2

∫ T

0
u2F̄n(u)du

)]
F̄n(T ).

Let

T ∗n
def
= inf {T : L∗n(T ) = 0}
= min {T : L∗n(T ) = 0} . (9)

The following theroem shows that the sequence {T ∗n} is strongly consistent
under certain condition. The proof is similar to that of Theroem 1 with obvious
modifications and is not given here.

Theorem 2: If F is IFR having a uniformly continuous density function
f(·), then T ∗n , defined in (9), is a strongly consistent estimator of the optimal
age replacement policy T0.

Remark 1: One can show that the sequence {T ∗n} is strongly consistent
under the condition of the above theorem when the maintenance cost is a
piecewise polynomial of degree m.

IV. A SIMULATION STUDY

We conclude our discussion with a simulation study to illustrate the efficiency
of our estimation procedure compare to that proposed by Roy and Basu (1993)
in the context of an age replacement policy. Since Rayleigh distribution has a
wide range of applications in modeling life distributions of various electronic
components, we take this distribution having survival function

F̄ (x) = e−ηx
2
; η > 0, x ≥ 0,

as the underlying distribution. This is a strictly increasing failure rate (IFR)
life distribution. For specific set of values of η, λ, α, β, δ and R1, we calculate
the optimal age replacement time T0 by solving equation (2). On the basis of
the random observations generated from Rayleigh distribution, we calculate
the Roy and Basu’s estimator RBn, as well as the estimator Tn as defined
in (4). We then measure the absolute difference of T0 from RBn and also
from Tn respectively. To increase the level of efficiency, the entire process
is repeated 100 times. We note the proportion of occasions for which |T0 −
Tn| < |T0−RBn| and consider this proportion as a measure of efficiency of
Tn over RBn in estimating T0. If this proportion exceeds 0.5, we conclude
that Tn is better than RBn for that set up.

We take, for simplicity, the following kernel function

K(x) =
1

2
, if |x| ≤ 1

K(x) = 0, otherwise,
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and the window width bn=n−1/2. It is to be noted that the kernel estimator
fn of the underlying density function is piecewise continuous and vanishes
outside [X(min)-ζbn,X(max)+ζbn]. We adopt an iterative method to solve
the integral equations (2) and (3) and stop the iteration as soon as the
difference of two consecutive solutions falls below 10−6.

On the basis of 100 runs each involving 40 random observations,
generated from the underlying distribution, the efficiency of the proposed
estimator Tn is illustrated in Table 1. This shows that the estimator T40 (Tn
based on n = 40) proposed in this paper is better than Roy and Basu’s
estimator RB40 for all the values of the parameters considered here. Column
7 of this table (E) indicate Eifficiency of Tn over RBn.

Table I
EFFICIENCY OF Tn OVER RBn

η λ α β δ R1 E Better estimator
0.05 1 1 2 1 0.1 0.82 Tn

0.1 1 1 2 1 0.1 0.68 Tn
0.1 1 1 2 1 1.0 0.80 Tn
0.1 1 1 2 2 1.0 0.75 Tn
0.1 1 1 2 3 1.0 0.97 Tn
0.1 1 1 2 10 1.0 0.68 Tn
0.1 1 1 2 20 1.0 0.72 Tn
0.1 1 1 2 20 2.0 0.68 Tn
0.1 1 1 2 20 4.0 0.92 Tn
0.1 1 1 2 30 1.0 0.79 Tn
0.1 1 1 2 30 2.0 0.68 Tn
0.1 1 1 2 30 4.0 0.78 Tn
0.1 1 1 2 30 10 0.84 Tn
0.1 2 1 2 1 0.1 0.79 Tn

0.2 1 1 2 1 0.1 0.99 Tn
0.2 2 1 2 1 0.1 0.79 Tn

0.3 1 1 2 1 0.1 1.00 Tn
0.3 2 1 2 1 0.1 1.00 Tn

0.4 1 1 2 1 0.1 1.00 Tn
0.4 2 1 2 1 0.1 1.00 Tn

2.0 1 1 2 1 0.1 1.00 Tn
5.0 2 1 2 1 0.1 1.00 Tn
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