

Volume 66, Issue 2, 2022

Journal of Scientific Research

of

The Banaras Hindu University

91

DOI: 10.37398/JSR.2022.660212

Performance Analysis of SSL/TLS Crypto Libraries: Based on Operating Platform

Suresh Prasad Kannojia1[0000-0001-5439-4269] and Jitendra Kurmi2[0000-0002-0804-4556]

1 Lucknow University, Lucknow, Uttar Pradesh, India - 226007
2 Lucknow University, Lucknow, Uttar Pradesh, India - 226007

spkannojia@gmail.com

jitendrakurmi458@gmail.com

Abstract. Security in Computer Network Communication is of

great importance because unauthorized users attempt to steal,

modify, misuse, interrupt, and try to un-stabilize, smartly our

network systems. Therefore up to some extent, the secure

communication provided by Transport Layer Protocol,

implementation of the TLS function, and distinct libraries were

designed by researchers, of which each library has the broad

support of the encryption algorithms. But security can be

compromised and seen in an offensive maneuver of the digital

world as the main challenge in communication. In this paper,

performance analysis of the most authentic six libraries: OpenSSL,

AWS s2n, GnuTLS, NSS, BoringSSL, and Cryptlib performed to

find appropriate TLS libraries for uncompromised communication

based on throughput, CPU usage in the different virtual operating

environments.

Keywords: TLS, OpenSSL, GnuTLS, Performance.

1 Introduction

 Security in communication is essential to facilitate reliability,

data integrity, and confidentiality. Transport Layer Security can

provide these aspects for secure connection over computer

networks. To prevent the eavesdropping and tampering of data,

in various services such as Email, Voice over Internet Protocol,

Web browsing, and bank transaction, where uses a set of security

algorithms like the key exchange algorithm, hash function, and

public-key cryptography, to meets the increasing demand for

enhanced security over the years. Different versions of TLS have

been designed and developed by researchers as per the

requirement of secure communication.

 According to the Internet Engineering Task Force, using

cipher suites older than TLS 1.0 for secure communication is

ineffective though some browsers warn you if a site uses an older

version. The widely used Google Chrome and Mozilla Firefox

browsers support the implementation of TLS1.3, widely used by

users. In the case of connectionless applications, they use the

datagram transport layer security. Although DTLS is similar to

TLS, with the exception that DTLS must deal with packet loss

and reordering issues. Three characteristics of DTLS

implementation are as follows:

1) Packet Retransmission – The damaged and lost data packets

are retransmitted.

2) Sequencing of Packets – To reordering damage and lost data

packets, a sequence number is assigned.

3) Replay Detection – Reply detection is used to avoid duplicate

packets and discard-ing old received packets.

In this paper, we have took six well known TLS libraries for

performance analysis based on the throughput and CPU use up

over five different operating platforms.

2 Review of Literature

TLS supports connectionless services, to deal with issues of

packet loss and reordering for data packets [1]. Computer aided

cryptography plays a crucial role in the standardization

processes where proses, formulas, and pseudo code are wants to

write cryptographic standards with clarity, simple

implementation, and ability [2]. The most effective standard way

to analyze the massive cryptographic systems completed is by

composing less complicated building blocks. Numerous

cryptographic researchers found that preserving the safety

underneath composition is tough Universal composability is

employed for analyzing large cryptographic systems by most

game based security definitions [3]. The function correctness

proofs prefer by automating equivalence to solve the sequence

of simple transformations. However, most function correctness

proofs are not automatic in proving the functional correctness

and simple transformation [4]. Furthermore, computer-aided

cryptography using the machine checkable approach to design,

analyze, and implement has developed and to evaluate the

accuracy, scope, trustworthiness, usability of state-of-the-art

tools, and their research difficulties the taxonomy was created

[5].

In literature, an open source TLS library Network Security

Service supports cross platform server side and hardware, in

1997, the smart cards on the client side advance by Netscape [6].

Further, in 1998 Eric Andrew Young and Tim Hudson

established an Open-Source framework OpenSSL for secure

communication over a computer network [7]. In 2003 Nikos

Mavrogiannopoulos created the GnuTLS as a library that allows

client applications to provide a secure connection over a

computer communication network using suitable protocols [8].

In 2003 Cryptlib was created by Gutmann as an open source

security toolkit that supports multiple crypto graphical libraries

for implementing secure sessions in SSL/TLS [9]. In 2014

Google built and developed Boring SSL to meet their demands,

mailto:spkannojia@gmail.com

Journal of Scientific Research, Volume 66, Issue 2, 2022

92

Institute of Science, BHU Varanasi, India

and it supports a variety of cipher suite algorithms for secure

communication [10]. In 2015, Amazon Web Services Developed

AWS s2n services as an open source library that supports

different cryptographic algorithms to implement SSL/TLS [11].

Whereas EverCypt has developed by the Everest project, a

C/x86 cryptography library [12-15]. The performance and recent

findings are outstanding, well optimized as the OpenSSL

program. It follows distinct concepts where the library and proof

are co-designed abnormal situations code synthesized. Some

handwritten libraries such as AWS-LC, BoringSSL, and

OpenSSL could be replaced by the above as per approach.

In literature, the CASM toolchain uses SMT solvers and

symbolic execution. It only looks at functions above message

blocks even it does not check the most optimized variants of this

algorithm. The SHA-256 is analyzed and verified in the CASM

project [16].

However, for algorithms proven Fiat Crypto was not applied

[17]. The high level specifications were uses to build portable C

field arithmetic implementations, the Fiat Crypto's code has

already been incorporated in OpenSSL [18]. After this, an

integration method vectorized in x86 implementations with

acceptable performance originated by Jasmin [19]. Jasmin's

implementation of ChaCha20-Poly1305 performs much better

than other hand optimized implementations, whereas SHA-256

and AES-GCM are not to discharge in Jasmin [20].

A bug found related to Nettle signature verification functions

such as GOST DSA, EDDSA, and ECDSA have been found in

the GnuTLS library to call the Elliptic curve cryptography, point

multiply function with out-of-range scalars, potentially resulting

in incorrect results in GnuTLS versions before 3.7.2. An attacker

can use this flaw to force an invalid signature, resulting in an

assertion failure or possible validation failure. Confidentiality,

integrity, and system availability are the most serious threats

posed by this vulnerability [21]. GnuTLS will fix bugs in the

versions.

From the literature, it's clear that none of the TLS libraries listed

above can guarantee secure communication in all circumstances.

It encourages me to analyze the performance of these TLS

libraries and find a better one that meets our needs..

3 Methodology

Here, six well known libraries like OpenSSL, BoringSSL,

GnuTLS, NSS, AWS s2n, and Cryptlib have been taken for

performance analysis, based on throughput, CPU usage for

secure communication on the different operating systems in the

virtual environ-ment, to find the most appropriate TLS libraries

based on performance with mini-mum system requirements.

4 Experimental Setup

The performance analysis of different SSL/TLS open-source

libraries and the evaluation based on publicly available

documentation. The RFCs for TLS have considered the

authoritative source for evaluation, if a particular library

confirms the TLS standard or not, with minimum system

requirements. Set of performance tests performed against a set

of test data on a reference system with Intel(R) Core(TM) i3-

3217U CPU @ 1.80GHz, RAM 8GB, and 25GB Hard Disk on

the virtual machine with the different operating system.

5 Experimental Results

The experiment has been performed over various operating

systems such as Ubuntu, Fedora, Debian-etch, Windows, Mac

for six open-source libraries such as OpenSSL, BoringSSL,

Cryptlib, AWS s2n TLS, GnuTLS, NSS, and obtained results

were tabulated in Table 1. The performance analysis based on

the throughput of each cipher suite described in sub Section 5.1,

Performance analysis based on the CPU usage for TLS Library

described in sub Section 5.2

5.1 Performance analysis based on the throughput of

each cipher suite

Speed test with Key Exchange Mechanism (Asymmetric

Ciphers). We have experimented on five different Operating

Systems out of which three operating systems are from Linux

(Ubuntu, fedora & Debian-etch) and the remaining two are

windows, mac to reveal details about the throughput of each

library. The throughput is calculated in terms of sign and verified

per unit time that is bytes/second. Each speed test consists of one

sign pass directly followed by a verify pass. The key exchange

cipher suites of each library are as follows:

• OpenSSL - RSA, DHE-RSA, DHE-DSS, ECDH-ECDSA,

ECDHE-ECDSA, ECDH-RSA, ECDHE-RSA, GOST

28147-89

• GnuTLS - RSA, DHE-RSA, DHE-DSS, ECDHE-ECDSA,

ECDHE-RSA

• BoringSSL- RSA, DHE-RSA, DHE-DSS, ECDHE-ECDSA,

ECDHE-RSA

• AWS s2n - RSA, DHE-RSA, ECDHE-RSA, ECDHE-

ECDSA

• NSS - RSA, DHE-RSA, DHE-DSS, ECDH-ECDSA,

ECDHE-ECDSA,ECDH-RSA,ECDHE-RSA, GOST 28147-

89

• Cryptlib - RSA, DHE-RSA, DHE-DSS, ECDHE-ECDSA

Here the libraries GnuTLS and OpenSSL Key exchange

mechanism ciphers Sign/s and verify/s on Ubuntu operating

system has been implemented obtained experimental results

tabulated in Table 1, and Table 2.

Journal of Scientific Research, Volume 66, Issue 2, 2022

93

Institute of Science, BHU Varanasi, India

Fig. 1. Proposed Methodology for performance analysis of libraries with distinct Operating Systems

Table 1. OpenSSL Library, Key Exchange Mechanism Ciphers Sign/s and Verify/s with Ubuntu

O
p

e
ra

ti
n

g

S
y

st
e
m

C
ip

h
e
r
s

Total Number of Input Buffer Size A
v

e
ra

g
e

T
o

ta
l

A
v

e
ra

g
e 1024 bits /

160 bits

2048 bits /

224 bits

3072 bits /

256 bits

7680 bits /

384 bits

15360 bits

/ 521 bits

U
b

u

n
tu

S
/s

V
/s

S
/s

V
/s

S
/s

V
/s

S
/s

V
/s

S
/s

V
/s

S
/s

V
/s

S
/s

V
/s

O
p

e
n

S
S
L

R
S

A

1
2
3
3

2
5
8
9

9

1
3
8
0

2
6
4
7

0

1
4
7
4

2
6
9
1

2

1
4
8
7

2
7
1
0

4

1
4
9
2

2
7
8
3

5

1
4
1
3

.2

2
6
8
4

4

1
3
4
7

2
6
7
5

4

D
H

E
-

R
S

A

1
2
0
9

2
5
9
6

1

1
2
9
6

2
6
6
4

5

1
3
5
1

2
6
6
9

7

1
3
8
9

2
7
2
8

4

1
4
9
7

2
7
8
0

5

1
3
4
8

.4

2
6
8
7

8
.4

D
H

E
-

D
S

S
 1
2
0
1

2
5
6
2

3

1
3
1
7

2
6
4
7

0

1
3
3
4

2
6
7
5

9

1
3
8
3

2
7
3
4

0

1
4
8
5

2
7
7
8

5

1
3
4
4

2
6
7
9

5
.4

E
C

D
H

-

E
C

D
S

A

1
1
9
0

2
5
3
2

9

1
2
3
2

2
6
1
6

5

1
2
9
4

2
6
3
1

0

1
3
2
7

2
7
4
6

7

1
3
4
2

2
7
5
3

1

1
2
7
7

2
6
5
6

0
.4

E
C

D
H

E
-

E
C

D
S

A

1
2
2
0

2
5
5
8

9

1
2
6
2

2
6
5
5

4

1
3
1
4

2
6
4
0

2

1
3
7
1

2
6
5
6

7

1
3
8
7

2
7
5
3

6

1
3
1
0

.8

2
6
5
2

9
.6

E
C

D
H

-

R
S

A

1
3
0
4

2
6
0
9

8

1
2
7
9

2
6
4
5

9

1
3
2
4

2
6
4
2

2

1
3
6
7

2
6
6
7

0

1
4
5
4

2
7
6
4

3

1
3
4
5

.6

2
6
6
5

8
.4

E
C

D
H

E
-R

S
A

1
3
3
4

2
6
2
1

4

1
3
0
6

2
6
7
7

0

1
3
8
4

2
6
7
1

2

1
3
7
9

2
6
9
6

4

1
4
9
2

2
7
7
3

5

1
3
7
9

2
6
8
7

9

G
O

S
T

-

2
8
1
4

7
-

8
9

1
2
3
9

2
5
5
9

9

1
3
1
6

2
6
8
9

0

1
3
4
4

2
6
9
2

3

1
3
8
9

2
7
0
6

4

1
5
0
2

2
7
9
5

8

1
3
5
8

2
6
8
8

6
.8

Journal of Scientific Research, Volume 66, Issue 2, 2022

94

Institute of Science, BHU Varanasi, India

Table 2. GnuTLS Library, Key Exchange Mechanism Ciphers Sign/s and Verify/s with Ubuntu

O
p

e
ra

ti
n

g

S
y

st
e
m

C
ip

h
e
r
s

Total Number of Input Buffer Size

Average Total Average
1024 bits / 160

bits

2048 bits / 224

bits

3072 bits / 256

bits

7680 bits / 384

bits

15360 bits / 521

bits

U
b

u
n

tu

 S
/s

V
/s

S
/s

V
/s

S
/s

V
/s

S
/s

V
/s

S
/s

V
/s

S
/s

V
/s

S
/s

V
/s

G
n

u
T

L
S

R
S

A

1
3
0
3

2
4
9
8

9

1
4
8
0

2
5
4
7

0

1
5
7
4

2
5
9
1

2

1
6
4
7

2
6
8
0

4

1
7
9
2

2
7
4
3

5

1
5
5
9

.2

2
6
1
2

2

1
4
3
2

2
6
2
3

3

D
H

E
-

R
S

A

1
3
3
2

2
5
3
6

1

1
4
0
6

2
5
6
4

5

1
4
4
1

2
6
0
9

7

1
6
0
4

2
6
4
8

4

1
6
6
7

2
6
8
0

5

1
4
9
0

2
6
0
7

8
.4

D
H

E
-

D
S

S
 1
3
0
1

2
5
2
2

3

1
3
7
7

2
5
8
7

0

1
4
0
4

2
6
1
5

9

1
4
8
8

2
6
3
4

0

1
5
3
5

2
6
7
8

5

1
4
2
1

2
6
0
7

5
.4

E
C

D
H

E
-

E
C

D
S

A

1
2
2
0

2
5
5
8

9

1
2
6
2

2
6
5
5

4

1
3
1
4

2
6
4
0

2

1
3
7
1

2
6
5
6

7

1
3
8
7

2
6
8
3

6

1
3
1
0

.8

2
6
3
8

9
.6

E
C

D
H

E
-

R
S

A
 1

3
3
4

2
6
2
1

4

1
3
0
6

2
6
7
7

0

1
3
8
4

2
6
2
1

5

1
3
7
9

2
6
5
6

4

1
4
9
2

2
6
7
3

5

1
3
7
9

2
6
4
9

9
.6

Table 3. Sign/s and Verify/s Comparison for Key Exchange Mechanism Ciphersuites of TLS Libraries

Oper

ating

Syste

m

OpenSSL GunTLS BoringSSL AWS s2n NSS Cryptlib

S/s V/s S/s V/s S/s V/s S/s V/s S/s V/s S/s V/s

Ubun

tu
1347

2675

4
1432

2723

3
1367

2779

0
1501

2780

2
1490

2787

0
1495

2789

5

Fedo

ra
1356

2675

6
1440

2723

7
1373

2778

7
1507

2781

0
1493

2787

7
1491

2789

9

Debi

an-

etch

1354
2675

9
1439

2723

3
1371

2778

9
1503

2780

9
1497

2787

4
1489

2790

4

Avg(l

inux)
1352

2675

6
1437

2723

4
1370

2778

8
1503

2780

9
1493

2787

3
1491

2789

9

Wind

ows
1348

2676

3
1434

2723

2
1368

2778

6
1510

2780

8
1498

2787

8
1497

2790

6

Mac 1347
2676

9
1433

2723

3
1368

2778

8
1504

2780

7
1495

2787

9
1494

2790

1

Aver

age
1350

2676

0
1435

2723

3
1369

2778

8
1505

2780

7
1494

2781

5
1493

2790

1

The above Table 3 has been prepared by adding the throughput in terms of S/s (sign/s) and V/s (verify/s) of cipher suites of each

library per distribution after that average per library is computed and a bar chart has been prepared and presented as fig.2.

Journal of Scientific Research, Volume 66, Issue 2, 2022

95

Institute of Science, BHU Varanasi, India

Fig. 2. Comparison of Sign/s and verify/s of Key Exchange Mechanism cipher suites of TLS libraries on different Operating System

Table 4. Boring SSL Library, Hashing Algorithm Ciphers, Throughput (KB/s) with Windows

Operating

System
Ciphers

Total Number of Input Buffer Size

Average Total Average

Windows 16 bytes/s 64 bytes/s 256 bytes/s 1024 bytes/s
8192

Bytes/s

Boring

SSL

HMAC(MD5) 6826.56 11719.17 14428.16 17211.69 21161.41 14269.4

14567.01

HMAC-SHA1 4781.35 12920.15 17515.97 19469.15 21148.46 15167.02

HMAC-

SHA256
4420.11 10641.73 16433.64 19783.17 20786.27 14412.98

HMAC-

SHA384
2746.43 10954.58 17531.5 19271.62 21589.13 14418.65

Table 5. AWS s2n Library, Hashing Algorithm Ciphers, Throughput (KB/s) with Windows

Operating System Total Number of Input Buffer Size

Average Total Average

Windows Ciphers 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

AWS s2n

HMAC(MD5) 6826.56 11719.17 14428.16 18211.69 24663.41 15169.8

15084.06

HMAC-

SHA1
4781.35 11920.15 16515.97 19369.15 23860.46 15289.42

HMAC-

SHA256
4420.11 10641.73 16433.64 19183.17 23851.27 14905.98

HMAC-

SHA384
2746.43 10954.58 17531.5 18731.62 24891.13 14971.05

Similarly, we can obtain the Total Number of Input Buffer

Size of Sign/s and Verify/s of the key exchange mechanisms for

libraries such as Boring SSL, AWS s2n, NSS, and Cryptlib with

remaining four operating systems such as Fedora, Debian-etch,

Windows, and Mac.

First, we have to calculate the average of throughput Sign/s

and Verify/s of each cipher suite using equation 1, then total

average throughput Sign/s and Verify/s of each library were

calculated using equation 2 and tabulated in Table 1 and Table

2.

 X=∑
𝑇ℎ𝐾𝐸𝑀𝐶𝑖𝑝ℎ𝑒𝑟𝑠(𝑚)

(𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒)

𝑛
𝑙=1 (1)

TAVGThOS(i)_TLSLibraries(j) = ∑
𝑋

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑆𝑦𝑠𝑡𝑒𝑚)

𝑛
𝑘=1

(2)

 WhereX= Average Throughput of TLS Libraries (for Sign/s,

verify/s)

Tavg Thos_TLSLibraries = Total Average Throughput of TLS

Libraries (for Sign/s, verify/s) with Operating system

Journal of Scientific Research, Volume 66, Issue 2, 2022

96

Institute of Science, BHU Varanasi, India

 ThKEM Ciphers = Throughput of Key Exchange

Mechanism Ciphers

 i = Ubuntu, Fedora, Debian-etch, Windows, and Mac

operating systems

j = OpenSSL, GnuTLS, BoringSSL, AWS s2n, NSS and

Cryptlib

k=1 & l=1

m= KEM Ciphers such as RSA, DHE-RSA ……in each

library

n= Total number of Key Exchange Mechanism in each library

From Table 3 and fig. 2, it is clear that the sign/s of NSS is less

than AWS s2n but higher than Cryptlib, whereas NSS verify/s is

higher throughput than AWS s2n, BoringSSL, GnuTLS, and

OpenSSL on Linux machine and Mac machines. The sign/s

throughput of GnuTLS has higher than OpenSSL, BoringSSL

but less than AWS s2n, NSS, and Cryptlib, whereas verify/s

throughput of OpenSSL has higher on Mac than Windows and

Linux in GnuTLS. As implementation results will scale up the

throughput due to optimized implementation on new Operating

Systems and better processors, OpenSSL will still provide high

throughput.

Observation: There are various issues regarding the methods

used for the test conducted in the research.

• We can observe that the cipher suites for the key

exchange mechanism tested for each library are not the

same. It could lead to result in shifting the throughput

of the cipher in each library.

• Now results are obtained with varying the buffer size,

containing data for each cipher suits only once, then the

average is computed with different buffer sizes.

Multiple results with the same buffer would have

produced the exact measurement then the average is

taken.

Speed test with Comparison of Hash Algorithms (Message

Authentication Code).

We have experimented on five different operating systems, of

which three operating systems are from Linux (Ubuntu, fedora

& Debian-etch) remaining two are windows, mac to reveal

details about the throughput of each library. The throughput

computed, data processed per unit time that is bytes/second. The

data collected is from five different operating systems to reveal

details about the throughput of each library. Each speed test

consists of one encryption pass directly followed by a decryption

pass. The Ciphers tested in each library are as follows:

• OpenSSL - HMAC-MD5, HMAC-SHA1, HMAC-

SHA256/384, AEAD, GOST 28147-89, GOST R 34.11-94

• GnuTLS - HMAC-MD5, HMAC-SHA1, HMAC-

SHA256/384

• BoringSSL - HMAC-MD5, HMAC-SHA1, HMAC-

SHA256/384

• s2n - HMAC-MD5, HMAC-SHA1, HMAC-SHA256/384

• NSS - HMAC-MD5, HMAC-SHA1, HMAC-SHA256/384

• Cryptlib - HMAC-MD5, HMAC-SHA1, HMAC-

SHA256/384

In this section, the libraries BoringSSL and AWS s2n, hashing

algorithms ciphers throughput with windows operating system

have been implemented and experimental results tabulated in

Table 4 and Table 5.

Similarly, as per the result of Table 4 and Table 5, we can obtain

the throughput (KB/s) of Hashing Algorithms for libraries such

as OpenSSL, GnuTLS, NSS, and Cryptlib on remaining four

operating systems such as Ubuntu, Fedora, Debian-etch, and

Mac. The average throughput (KB/s) of every library is tabulated

in Table 4 and Table 5. Then total average throughput (KB/s) of

each library is tabulated in Table 6, derived from Table 4 and

Table 5 using the following formulae represented in equations

(3) and (4):

X= ∑
𝑇ℎ𝐻𝑎𝑠ℎ𝑖𝑛𝑔𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝐶𝑖𝑝ℎ𝑒𝑟𝑠(𝑚)

(𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒)

𝑛
𝑙=1 (3)

TAVGThOS(i)_TLSLibraries(j) = ∑
𝑋

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑆𝑦𝑠𝑡𝑒𝑚)

𝑛
𝑘=1

 (4)

 Where X= Average Throughput of TLS Libraries

And TAVGTHOS_TLSLibraries = Total Average Throughput of TLS

Libraries

 ThHashingAlgorithm Ciphers = Throughput of

Hashing Algorithm Ciphers

 i = Ubuntu, Fedora, Debian-etch, Windows, and Mac

operating systems

j = OpenSSL, GnuTLS, BoringSSL, AWS s2n, NSS and

Cryptlib

k=1 & l=1

m= Hash Algorithms Ciphers such as HMAC (MD5),

HMAC-SHA1…….in each library

n= Total number of Hash Algorithms in each library

Table 6. Throughput (KB/s) Comparison of Hashing Algorithms for

TLS Libraries different with operating system

Operatin

g

 System

OpenSS

L

GunTL

S

BoringSS

L

AWS

s2n
 NSS

Cryptli

b

Ubuntu 15,756 15,152 14,529 15,192 14,892 14,374

Fedora 15,640 15,410 14,557 15,140 14,877 14,365

Debian-

etch
15,776 15,797 14,565 14,899 14,890 14,388

Windows 15,684 15,765 14,567 15,084 14,886 14,378

Mac 15,699 15,269 14,566 15,061 14,879 14,377

Average 15,711 15,478.6 14,556.8
15,075.

2

14,884.

8
14,376.4

The above Table 6 has been prepared by adding the

throughput of ciphers of each library per distribution. After that

average per library is calculated and a bar chart has been

presented as Fig. 3.

Journal of Scientific Research, Volume 66, Issue 2, 2022

97

Institute of Science, BHU Varanasi, India

Fig. 3. Throughput (KB/s) comparison of Hashing Algorithms of TLS

libraries with different operating system

Fig. 3 and Table 6, clearly show that the OpenSSL has higher

throughput for the operating system as Ubuntu, Fedora, and Mac

as compare to TLS libraries: BoringSSL, Gnu TLS, AWS s2n,

NSS, and Cryptlib, whereas OpenSSL throughput is low on

Debian and windows as compare to Gnu TLS. The boringSSL

and Cryptlib having low throughput among all six TLS libraries

in each operating system. The Library AWS s2n has better

throughput as compared to Boring SSL, NSS, and Cryptlib

libraries. The NSS has higher throughput as compared to Boring

SSL and cryptlib libraries. As the implementation results will

scale up the throughput due to optimized implementation on new

Operating Systems (OS) and better processors, so OpenSSL will

still provide high throughput.

Observation: There are some issues regarding the methods used

for the test conducted in the re-search.

• We can observe that the hash algorithms ciphers tested

for each of the libraries are not the same. It could result

in shifting the throughput of ciphers in each library.

• When buffer size containing data varies for each cipher

only once. Multiple results with the same buffer would

have produced the exact measurement then the average

is taken.

Speed test and Comparisons of Symmetric Ciphers.

Experiment using symmetric ciphers found in well-known open

source cryptography libraries, out of this OpenSSL, GnuTLS,

BoringSSL, s2n, NSS, and Cryptlib chosen. The throughput is

calculated in terms of data processed per unit time that is

bytes/second, to reveal details about the throughput of each

library. Each speed test consists of one encryption pass directly

followed by a decryption pass. The Ciphers tested in each library

as:

• OpenSSL - AES GCM, AES CCM, AES CBC, Camellia

CBC, ARIA GCM, SEED CBC, 3DES, GOST 28147-89,

ChaCha20-Poly1305

• GnuTLS - AES GCM, AES CCM, AES CBC, Camellia

GCM, Camellia CBC, , 3DES, ChaCha20-Poly1305

• BoringSSL - AES GCM, AES CBC, 3DES, Chacha20-

Poly1305

• s2n - AES GCM, AES CBC, 3DES, ChaCha20-Poly1305

• NSS - AES GCM, AES CBC, Camellia CBC, SEED CBC,

3DES, Chacha20-Poly1305

• Cryptlib - AES GCM, AES CBC, 3DES

In this section, the NSS and Cryptlib, symmetric ciphers,

throughput with Mac operating system have been performed,

and experimental results tabulated in Table 7 and Table 8.

Similarly, as per the result of Table 7 and Table 8, we can obtain

the throughput (KB/s) of Symmetric ciphers for libraries such as

OpenSSL, GnuTLS, BoringSSL, and AWS s2n on remaining

four operating systems such as Ubuntu, Fedora, Debian-etch,

and Windows. The average throughput (KB/s) of each library are

computed, and the total average throughput (KB/s) of each

library is tabulated in Table 9, derived from Table 7 and Table 8

using the following formulae represented in equations (5) and

(6):

X= ∑
𝑇ℎ𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝐶𝑖𝑝ℎ𝑒𝑟𝑠(𝑚)

(𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒)

𝑛
𝑙=1

(5)

TAVGThOS(i)_TLSLibraries(j) = ∑
𝑋

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑆𝑦𝑠𝑡𝑒𝑚)

𝑛
𝑘=1

 (6)

Where X= Average Throughput of TLS Libraries

And TAVGTHOS_TLSLibraries = Total Average Throughput of TLS

Libraries

 ThSymmetric Ciphers = Throughput of Symmetric

Ciphers

 i = Ubuntu, Fedora, Debian-etch, Windows and Mac operating

systems

j = OpenSSL, GnuTLS, BoringSSL, AWS s2n, NSS and

Cryptlib

k=1 & l=1

m= Symmetric Ciphers such as AES GCM, AES CBC…….in

each libraries

n= Total number of Symmetric ciphers in each libraries

Table 7. NSS library, Symmetric Ciphers, Throughput (KB/s) with Mac

Operating

System
Ciphers

Total Number of Input Buffer Size
Average

Total

Average
Mac 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

NSS

AES GCM 5826.56 10719.17 18428.16 21211.69 29123.41 17061.8

16192.41

AES CBC 4671.35 10920.15 18515.97 22269.15 29210.46 17117.42

Camellia CBC 4981.35 10657.15 18515.97 21269.15 29210.46 16926.82

SEED CBC 5781.35 10920.15 19515.97 23269.15 29010.4 17699.4

Journal of Scientific Research, Volume 66, Issue 2, 2022

98

Institute of Science, BHU Varanasi, India

3DES 4420.11 10641.73 19433.64 23183.17 20191.27 15573.98

Chacha20-

Poly1305
2746.43 6554.58 15531.5 20031.62 19011.13 12775.05

Table 8. Cryptlib Library, Symmetric Ciphers, Throughput (KB/s) with Mac

Operating

System
Ciphers

Total Number of Input Buffer Size

Average
Total

Average
Mac

16

bytes

64

bytes

256

bytes

1024

bytes

8192

bytes

Cryptlib

AES

GCM
4826.56 7719.17 9028.16 12211.69 14123.41 9581.798

9756.133 AES

CBC
4781.35 7820.15 9011.97 11263.15 14305.46 9436.416

3DES 4420.11 8241.73 11227.64 14183.17 13178.27 10250.18

Table 9. Throughput (KB/s) Comparison of Ciphers for TLS Libraries with different operating system

 Operating

 System
OpenSSL GunTLS BoringSSL AWS s2n NSS Cryptlib

Ubuntu 33,743 27,192 19,792 12,192 16,192 9,756

Fedora 32,225 27,140 18,940 11,140 16,140 9,140

Debian-etch 33,814 27,899 19,099 10,899 16,899 9,876

Avg (Linux) 33260 27410 19277 11410 16410 9590

Windows 33,179 27,384 19,984 12,384 16,384 9,684

Mac 33,844 27,261 19,261 11,261 16,261 9,899

Average 33,359.2 27,375.2 19,415.2 11,575.2 16,375.2 9,671

The above Table 9 has been prepared by adding the throughput of ciphers of each library per distribution. Then at the end, the

average per library is calculated and a bar chart has been presented as Fig. 4.

Fig. 4. Comparison of Throughput (KB/s) of Ciphers of TLS libraries on different Operating System

We conclude from above Fig. 4 and Table 9, which clearly show

that the OpenSSL has higher throughput regardless of the Linux

distribution it is running on. GnuTLS has higher throughput as

compared to Boring SSL, AWS s2n, NSS, and Cryptlib libraries.

The NSS having better output as compared to AWS s2n and

Cryptlib. As the implementation results will scale up the

throughput due to optimized implementation on new Operating

Systems and better processors, so OpenSSL will still provide

high throughput.

Observation: There are some issues regarding the methods used

for the test conducted in the research.

Journal of Scientific Research, Volume 66, Issue 2, 2022

99

Institute of Science, BHU Varanasi, India

• We can observe that the ciphers tested for each of the

libraries are not the same leads to shifting in the true

throughput of each cipher in the library.

• By varying the buffer size, results are obtained

containing data for each cipher only once. Then the

average is calculated with different buffer sizes.

Multiple results with the same buffer would have

produced the exact measurement then the average is

taken.

5.2 Comparison of TLS Libraries with CPU-

Usage

Here CPU usage is calculated for different TLS libraries using

vmstat from the procps package with command vmstat –m based

on Linux distribution. The CPU Usage (%) can be obtained using

the formulae given in equations (7) and (8) and values tabulated

in Table 10.

 UM (Mb) = TM – (FM + BM + CM) (7)

Where UM represents Utilized Memory, TM represents Total

Memory, FM represents free Memory, BM represents Buffered

Memory and CM represents Cached Memory.

 CPU-Usage (%) = (UM / TM) * 100 (8)

Table 10. Comparison of TLS libraries with CPU-Usage on Linux

TLS

Libraries

Utilized

Memory

(UM)(Mb)

Total

Memory (TM)

(Mb)

CPU-

Usage (%)

OpenSSL 8063 8192 98.42

GnuTLS 7923 8192 96.71

BoringSSL 7834 8192 95.62

S2n 7412 8192 90.47

NSS 7568 8192 92.38

Cryptlib 7497 8192 91.51

Fig. 5. Comparison of TLS Libraries with CPU –Usage

 In, Fig. 5 and Table 10, we can observe the comparison

between run type of memory and CPU utilization. The CPU

usage by OpenSSL is higher as compared to libraries such as

Gnu TLS, BoringSSL, AWS s2n, NSS, and Cryplib. It means

higher the performance of CPU usage faster the libraries will

run. In this case, the OpenSSL has the faster execution of

libraries cipher suite.

 Similarly, GnuTLS has high CPU usage compared to

BoringSSL, NSS, AWS s2n, and Cryptlib. The CPU usage by

AWS s2n is also low among all libraries.

5.3 Result Analysis

As we have seen various analysis criteria for the TLS libraries,

it should be easier to get a clear view of the best library among

all compared. But the choice of the best library can be

categorized based on the following categories.

Higher Throughput: The results observed consistently showed

that OpenSSL has an overall high throughput for cryptographic

algorithms. The optimization present in the library, support for

the AES-NI set can be beneficial to achieve desired throughput

and which is easy to implement.

Portable and lightweight: When questions arise about the

implementation of TLS on a mobile platform or memory

constraints of the systems, the developer will need to use the

library that has less size and is portable. GnuTLS can provide a

lightweight C language API for various cryptographic

operations. There have been some security cocerns regarding the

bug discovered in GnuTLS for certificate verification and fixed

in the latest versions.

Cross - Platform Support: If the application needs to support

cross-platform functionality, then NSS can be an excellent

choice. The same library has components and modules which are

compatible with both UNIX-based and Windows systems.

License compatibility: The OpenSSL is under Apache License

and is open to use, but some constraints make this license

incompatible with General Public License. In development,

there is a possibility of interoperability between applications

with these licenses, which can cause some license issues. GPL

licenses are widely used GnuTLS with GPL and NSS under

Mozilla license have compatibility with GPL license. So if there

are some components in the infrastructure using GPL license,

then selecting GnuTLS or NSS would be a better choice.

Novice TLS developer: If the developer implementing a TLS

solution for the application or even if wanted to learn the TLS

semantics, then OpenSSL will be the better choice. It has support

avail-able from the community. It has industry-standard

implementation and easy configuration.

6 Conclusion

In this paper, a comparison of six different TLS libraries having

unique features has been done, to find an appropriate TLS library

for secure communication. Performance tests observed and

conducted justified the expected higher throughput for the

OpenSSL library. The throughput calculation for Asymmetric

algorithms, hashing algorithms, and cipher is analyzed, which

will provide insights on resource intensive operations and tasks

and how each library scales to that load. Consistent results

Journal of Scientific Research, Volume 66, Issue 2, 2022

100

Institute of Science, BHU Varanasi, India

observed in each performed test, the comparisons among

OpenSSL, GnuTLS, BoringSSL, s2n, NSS, and Cryptlib in

virtual environments proved the occurrences of overhead in

virtual machine causing the throughput to lower. If the overhead

in-creases with increasing the buffer size, then there is the

possibility of drastic change in the throughput. The tests also

justified the high throughput for OpenSSL than other TLS

libraries in a virtual operating system environment. The

experimental results obtained from performance based on CPU

usage by OpenSSL is high compared to other libraries such as

Gnu TLS, BoringSSL, AWS s2n, NSS, and Cryplib. It means the

higher the CPU usage of TLS libraries, the faster libraries will

run. The methods used in this work can be improved and fine-

tuned in the future.

References

[1] E. Rescorla, RTFM Inc., N. Modadugu, Google Inc., “Datagram

Transport Layer Security Version 1.2”, (January 2012), RFC 6347,

Internet Engineering Task Force (IETF), Available:

https://tools.ietf.org/html/rfc6347#section-3.3

[2] K. Bhargavan, F. Kiefer, and P. Strub, “hacspec: Towards

verifiable crypto standards,” in International Conference on

Security Standardisation Research (SSR), ser. LNCS, vol. 11322.

Springer, 2018, pp. 1–20.

[3] R. Canetti, A. Stoughton, and M. Varia, “EasyUC: Using

EasyCrypt to mechanize proofs of universally composable

security,” in IEEE Computer Security Foundations Symposium

(CSF). IEEE, 2019, pp.167–183.

[4] J. P. Lim and S. Nagarakatte, "Automatic equivalence checking for

assembly implementations of cryptography libraries," in Proc. of

the IEEE/ACM International Symposium on Code Generation and

Optimization, (CGO). IEEE, 2019, pp. 37–49.

[5] Barbosa, Manuel, Gilles Barthe, Karthik Bhargavan, Bruno

Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. "SoK:

Computer-aided cryptography." In SP 2020-42nd IEEE

Symposium on Security and Privacy. 2021.

[6] Mozilla Developer Network. Network Security Services.

Available:

https://developer.mozilla.org/enUS/docs/Mozilla/Projects/NSS#D

ocumentation. Accessed: Aug 10, 2021.

[7] OpenSSL, Cryptography and SSL/TLS Toolkit - Threads, 1.0.2

manpages , (n.d), Available :

https://www.openssl.org/docs/man1.0.2/crypto/threads.html

[8] GnuTLS, Transport Layer Security Library for the GNU system,

for version 3.7.1, 3 March 2021. Available:

https://www.gnutls.org/manual/gnutls.html

[9] Gutmann, Peter (2019). "Downloading". cryptlib. University of

Auckland School of Computer Science. Retrieved 2021-07-07.

[10] Google. "BoringSSL." Google.

https://boringssl.googlesource.com/boringssl/ (accessed 13 Jun,

2020).

[11] Schmidt, Stephen. "Introducing s2n, a new open-source TLS

implementation, June 2015." (2015).

[12] Ye, K.Q., Green, M., Sanguansin, N., Beringer, L., Petcher, A.,

Appel, and A.W.: Verified correctness and security of mbedtls

HMAC-DRBG. In: Thuraisingham, B.M., Evans, D., Malkin, T.,

Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, CCS 2017, Dallas,

TX, USA, 30 October–03 November 2017, pp. 2007–2020. ACM

(2017).

[13] Bond, B., et al.: Vale: verifying high-performance cryptographic

assembly code. In: 26th USENIX Security Symposium, USENIX

Security 2017, Vancouver, BC, pp. 917–934. USENIX

Association (August 2017)

[14] Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi,

A., Swamy, N.: A verified, efficient embedding of a verifiable

assembly language. Proc. ACM Program. Lang. 3(POPL), 63:1-

63:30 (2019).

[15] Timo Bingmann, Speedtest, and Comparison of Open-Source

Cryptography Libraries and Compiler Flags, 14 July 2008 [online].

Available: https://panthema.net/2008/0714-cryptography-

speedtestcomparison/

[16] Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.:

HACL*: a verified mod-ern cryptographic library. In:

Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)

Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, CCS 2017, Dallas, TX, USA, 30

October–03 November 2017, pp. 1789–1806. ACM (2017).

[17] Lim, J.P., Nagarakatte, S.: Automatic equivalence checking for

assembly implementations of cryptography libraries. In:

Kandemir, M.T., Jimborean, A., Moseley, T. (eds.) IEEE/ACM

International Symposium on Code Generation and Optimization,

CGO 2019, Washington, DC, USA, 16–20 February 2019, pp. 37–

49. IEEE (2019).

[18] Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple

high-level code for cryptographic arithmetic - with proofs, without

compromises. In: Proceedings of the 40th IEEE Symposium on

Security and Privacy, S&P 2019 (May 2019)

[19] Vinodh Gopal, Jim Guilford, Erdinc Ozturk, Sean Gulley, Wajdi

Feghali “Improving OpenSSL* Performance” in IA Architects

Intel Corporation, October 2011. Available:

https://software.intel.com/sites/default/files/open-sslperformance-

paper.pdf

[20] Boston B. et al. (2021) Verified Cryptographic Code for

Everybody. In: Silva A., Leino K.R.M. (eds) Computer Aided

Verification. CAV 2021. Lecture Notes in Computer Science, vol

12759. Springer, Cham.

[21] Nettle signature verification CVE-2021-20305, 2021, [online]

Available at: <http://www.cve.mitre.org/cgi-

bin/cvename.cgi?name=cve-2021-20305> [Accessed 13 October

2021].

https://tools.ietf.org/html/rfc6347#section-3.3

