

Volume 66, Issue 2, 2022

Journal of Scientific Research

of

The Banaras Hindu University

16

DOI: 10.37398/JSR.2022.660203

Algorithm Design for Deterministic Finite Automata for a Given Regular Language

with Prefix Strings

Rashandeep Singh1 and Dr. Gulshan Goyal2

1, 2Chandigarh College of Engineering and Technology, Chandigarh, India
1rashandeepsingh@gmail.com, 2gulshangoyal@ccet.ac.in

Abstract. Computer Science and Engineering have given us the

field of automata theory, one of the largest areas that is concerned

with the efficiency of an algorithm in solving a problem on a

computational model. Various classes of formal languages are

represented using Chomsky hierarchy. These languages are

described as a set of specific strings over a given alphabet and can

be described using state or transition diagrams. The

state/transition diagram for regular languages is called a finite

automaton which is used in compiler design for recognition of

tokens. Other applications of finite automata include pattern

matching, speech and text processing, CPU machine operations,

etc. The construction of finite automata is a complicated and

challenging process as there is no fixed mathematical approach

that exists for designing Deterministic Finite Automata (DFA) and

handling the validations for acceptance or rejection of strings.

Consequently, it is difficult to represent the DFA’s transition table

and graph. Novel learners in the field of theoretical computer

science often feel difficulty in designing of DFA The present paper

proposes an algorithm for designing of deterministic finite

automata (DFA) for a regular language with a given prefix. The

proposed method further aims to simplify the lexical analysis

process of compiler design.

Keywords: Automata, Deterministic Finite Automata, Formal

language, Prefix strings, Regular language.

1 Introduction

Languages are means of communication and can be natural or

formal. Examples of natural languages include English, Hindi,

and Punjabi, etc. which have a predefined fixed set of

alphabets. However, a formal language can be described as a

set of strings over a given alphabet [1]. For example, binary

language helps in communicating with computers. The

alphabet of binary language includes two input symbols,

namely 0 and 1.

According to the Chomsky hierarchy [2], [3], [4], formal

languages are further divided into the following types:

Table 1. Chomsky Hierarchy

Type Language (Grammar)

3 Regular Language

2 Context-Free Language

1 Context-Sensitive Language

0 Recursive and Recursively

Enumerable Language

Out of these formal languages, regular languages form an

important part of the lexical analysis phase of compiler design.

The lexical analysis phase of compiler design deals with

scanning a source program and separating the program units

into logical categories called tokens. The tokens are described

using regular expressions. Further, the tokens can be

recognized using finite automata [5]. Therefore, it becomes

important to study about regular languages. The regular

language can be represented using a finite state machine also

called finite automata [6], [7]. The automata can be in only one

state at a time and the input system results in transition from

current to next state [8].

Some basic terms used in automata theory are:

1. Alphabet (∑), is a set of non-empty and finite input symbols.

e.g. ∑ = {0, 1} represents binary alphabet consisting of 0 and

1.

2. Strings (w), is a finite arrangement of input symbols selected

from the alphabet ∑, normally denoted by w, x, y, z. e.g. if

∑ = {0, 1} then 1011 and 111 are example strings.

3. ∑* is set of all strings over an alphabet ∑. e. g. if ∑ = {0, 1}

then ∑* = {ᴧ, 0, 1, 00, 01, 10, 11, ….}

4. Languages (L), is a set of specific strings selected from ∑*.

Mathematically L is a subset of ∑*.

It is possible to represent a formal language using a finite

state machine [9]. For instance, a regular language that is

described using mathematical expressions called regular

expressions can be recognized by finite automata [7]. Finite

automata can be either deterministic or non-deterministic in

nature. In deterministic finite automata, each state and input

symbol undergoes exactly one transition [8]. In non-

deterministic finite automata, however, each state and input

symbol may undergo zero, one or more transitions [10].

State/Transition diagram or table is used to represent a DFA.

Finite automata help in string recognition or rejection, i.e. if by

the end of the input string, if the current position is the final

state then the string is accepted otherwise it gets rejected [11].

mailto:rashandeepsingh@gmail.com
mailto:2gulshangoyal@ccet.ac.in

Journal of Scientific Research, Volume 66, Issue 2, 2022

17

Institute of Science, BHU Varanasi, India

There is the extreme importance of DFA in numerous

applications including pattern matching, video games, text

processing, speech processing, real-life mechanisms such as

elevators, traffic lights, and token recognition in compiler

design. Also, a given input in 0 and 1 format is processed in

CPU to generate the output in the same format which is further

converted in user understandable format. Therefore, the CPU

performs machine operations internally and automata is used to

design such machines. However, the difficulty is faced by

novel learners in this field to design DFA due to its complex

nature.

The JFLAP tool provides open-source free software for

design of machines such as finite state machines, PDA, and

Turing machines. However, there must be a mechanism in

order to define and present the transitions. DFA is used to solve

numerous problems because it is implementable in both

software and hardware due to its deterministic nature. There is

no well-defined algorithm for its design. Therefore, an

algorithm is required to help in the automatic generation of

DFA. This paper focuses on designing an algorithm for a

regular language with a prefix string. A description of DFA is

presented in the next section.

2 Deterministic Finite Automata

Deterministic finite automata can be defined as a finite state

machine which allows exactly one transition for each state and

input symbol [12]. Finite Automata (M) is mathematically

stated as a 5-tuple set as described in Table 2 [13], [14],

M= (Q, ∑, 𝛿, q0, F or A)

Where,

Table 2. 5-tuple Set of Finite Automata (M)

Tuple Description

Q Finite set of states

∑ Finite set of input symbols

𝛿 Transition function. Mathematically, Q x ∑

→ Q

q0 Initial or start state and q0 ∈ Q

F or A Set of accepting/final states F

Representational descriptions of an initial and final state are

shown in Figure 1 and Figure 2 respectively.

Fig. 1. Representational Description of Initial State

Fig. 2. Representational Description of Final State

DFA accepts a string w if starting at state q0, the DFA ends at

an accept state (F) on reading the string w [15]. The DFA

accepts a language L if every string in L is recognized by M

and is denoted as L (M), which is pronounced as “M recognizes

L”.

Transitions occurring from one state to another can be

defined by the transition function as shown in Figure 3, δ: Q x

∑ → Q

δ(a, 0) → b ,where a, b ∈ Q and 0 ∈ ∑

Fig. 3. Representational Description of Transition Function

Transition Graph is also named “State Transition Diagram” in

which nodes represent states and the edges represent transitions

from one state to another [16]. The labels on the vertices are

used to show the names of the states, while the labels on the

edges show the present values of the input symbol.

As shown in Figure 4, q0, q1, q2, and q3 represent states in a

graph. q0 is the initial state from where transitions begin and q3

is the final state. If after string processing, we are at the final

state then the string is accepted, otherwise rejected. {a, b}

represents the transition symbols through which we can go

from one state to another.

Fig. 4. An Example Transition Diagram/Graph

The Transition table as shown in Table 3 is a tabular

representation of transition function which requires two

arguments – current state and input symbol. The output of the

transition function is a state. The state marked with an arrow is

the start state and the state marked with concentric circles is the

final state.

Table 3. Transition table

States a b

→q0 q1 q2

q1 q1 q3

q2 q2 q3

q3 q3 q3

M = ({q0, q1, q2, q3}, {a, b}, δ, q0, {q3})

where Q = {q0, q1, q2, q3}, ∑ = {a, b} and F = {q3}

Journal of Scientific Research, Volume 66, Issue 2, 2022

18

Institute of Science, BHU Varanasi, India

2.1 DFA with Prefix

A DFA with a given prefix is described as a string consisting of

leading symbols of a regular language. Figure 5 represents a

DFA over ∑= {a, b} which recognizes strings with the prefix

‘ab’, and Table 4 represents the transition table for the same.

Fig. 5. State/Transition Diagram for Strings Having Prefix ‘ab’

Table 4. State/Transition Table for Strings Having Prefix ‘ab’

States a b

→q0 q1 qϕ

q1 qϕ q2

q2 q2 q2

qϕ qϕ qϕ

So, after processing, the string 'ababb' is in the final state q2,

which is recognized by the DFA because starting from the

initial state q0, it is in the final state q2. Whereas the string

‘aabba’ will not be recognized by the DFA as after processing,

the string is in the state qϕ which is not a final state.

3 Literature Survey

Theoretical computer science has been a challenging area in

research for the past few decades. Alan Turing started the

initial research of this field in 1936 when he came up with the

idea of the Turing machine, which is a theoretical tool in

computer science used for modelling mechanical computation

[17]. The concept of finite automata came forward in 1943

during modelling of the human thought process by Warren

McCulloch and Walter Pitts [18]. A finite automaton in earlier

models consisted of set of transitions and states without any

input. In the 1950s, the researchers in [2] proposed the

powerful machines namely Mealy and Moore machines in

which output was also considered. The Mealy machine assigns

the output with every transition, while the Moore machine

assigns the output to every DFA state.

The minimization of DFA can be achieved using a novel

method defined in [19], having two phases where first phase

includes partitioning the state set into many blocks and the

second phase is used to refine the state set using a hash table

and DFA can also be applied on acyclic or cyclic automata.

DFA has extreme importance in many applications such as it

is used in token recognition in compiler design [5]. It is also

used in text processing [20] and speech processing [5]. Other

DFA applications include pattern matching [11], [13], vending

machines [21], and path-finding DFA in AI-driven video games

[22].

Also, the field of cryptography has made use of finite

automata. finite automata also have their application in the field

of cryptography. For encrypting and decrypting processes,

various types of finite automata are used, including simple,

structural, automata with I/O memory, and automata with

pseudo-memory [23].

A Neural Network-based adversarial model is proposed to

disclose the sensitive transitions of DFA. Additionally, a

substring is used to find the critical patterns of DFA which can

be used in cyber-physical systems [24]. Additionally, a neural

network-based approach is proposed in [25], which only works

efficiently for automata up to four characters and six states.

Recently, applications of finite automata are widely

increasing in various fields. A model is designed for leaf

detection classification to predict the leaf disease and further

proliferating the yield [26]. DFA is also used in abstract

protocols like TCP and mechanical procedures such as traffic

lights and elevators. A method to automatically track and

analyse the activities of players’ movements in basketball

games is proposed in [27] using deterministic finite automata.

A DFA for referee and player is made which consists of a large

number of states.

Researchers have examined the characteristics of DFA and

proposed an algorithm to design a DFA over alphabet

consisting of ‘a’ and ‘b’ having x number of a’s and y number

of b’s is discussed in [1]. Furthermore, an algorithm is defined

in [28] that only considers the designing of DFA that accepts

‘N’ base number so that the remainder is X, when ‘N’ is

divided by ‘M’.

Based on the literature, it can be concluded that despite the

fact that DFA has so many applications, learners have difficulty

designing it because a high level of understanding is required

[16]. For the given string, no well-defined algorithm exists for

generating a transition table. Identified gaps and challenges are

as given below:

1. There is no standard approach for the construction of DFA

due to which novel learners face difficulty in the field of

theoretical computer science.

2. Various tools such as JFLAP are used for designing

deterministic finite automata from the available transitions.

There is a need for some mechanism to define and present

transitions for applying in JFLAP.

3. DFA is useful in conceptualizing and visualizing many

emerging applications in real life.

Therefore, there is a need for a simple method for designing

DFA. The present paper focuses on the design and

implementation of an algorithm that is used to generate a DFA

for prefix strings in an easy and timely manner. The proposed

algorithm will provide a transition table and transition graph

which together as a whole provides a great insight to

understand and implement computation models easily. It can

work on any number of characters in the prefix string and any

number of states.

Journal of Scientific Research, Volume 66, Issue 2, 2022

19

Institute of Science, BHU Varanasi, India

4 Proposed Algorithm for the Design of DFA

for Regular Language given as Prefix

Present section focus on proposing an algorithm for designing

of DFA for the language which accepts strings given as prefix.

The steps of the proposed approach/method are as shown in

Figure 6:

Fig. 6. Algorithm for Designing of Deterministic Finite Automata

with Given Prefix

The flowchart for the same is shown in Figure 7.

5 Results and Discussions

An example of designing a transition table for DFA over ∑ =

{a, b} which recognizes strings having prefix (starting) ‘aba’.

No. of states = length of string + 1 + the dead state (qϕ)

q0 = initial state

q1 = strings starting with a (a of given string ‘a’ba)

q2 = strings starting with ab (ab of given string ‘ab’a)

q3 = final state and string starting with aba (final/given

string)

qϕ = dead state

Table 5. An initial template for the State/Transition table for strings

having prefix ‘aba’

Acceptance States a b

Λ →q0

a q1

ab q2

aba q3

dead qϕ

Steps to fill the table:

Step 1: For state q0:

--- Transition for state q0 on input symbol ‘a’ goes to state q1

i.e.

δ(q0, a) = q1

 Here, the state q1 accepts the string starting with ‘a’

--- Transition for state q0 on input symbol ‘b’ goes to state qϕ

i.e.

δ(q0, b) = qϕ

 It is because there is no state accepting ‘b’

Step 2: for state q1:

--- Combining the string of q1 with input symbol ‘a’:

transition for state q1 on input symbol ‘aa’ goes to state qϕ i.e.

δ(q1, aa) = qϕ

 It is because there is no state accepts string starting with

‘aa’

--- Combining the string of q1with input symbol ‘b’:

transition for state q1 on input symbol ‘ab’ goes to state q2 i.e.

δ(q1, ab) = q2

 Here, q2 accepts the string staring with ‘ab’

Step 3: for state q2:

--- Combining the string of q2 with input symbol ‘a’:

transition for state q2 on input symbol ‘aba’ goes to state q3 i.e.

δ(q2, aba) = q3

 Here, q3 accepts the string starting with ‘aba’

--- Combining the string of q2 with input symbol ‘b’:

transition for state q2 on input symbol ‘abb’ goes to state qϕ i.e.

δ(q2, abb) = qϕ

 It is because no state accepts string starting with ‘abb’

Step 4: for state q3:

--- For the final state, transition is the state itself. So, the

transition of state q3 on input symbol ‘a’ and ‘b’ goes to q3 i.e.

δ(q3, a) = q3

δ(q3, b) = q3

Step 5: for state qϕ:

--- For dead state, transition is the state itself. So, the

transition of state qϕ on input symbol ‘a’ and ‘b’ goes to qϕ i.e.

δ(qϕ, a) = qϕ

δ(qϕ, b) = qϕ

The final transition table as constructed by using steps of

algorithm is shown in table 6.

Table 6. State/Transition Table for Strings having Prefix ‘aba’

Acceptance States a b

Λ →q0 q1 qϕ

a q1 qϕ q2

ab q2 q3 qϕ

aba q3 q3 q3

dead qϕ qϕ qϕ

From the table, the corresponding transition/state diagram can

be constructed easily as shown in Figure 8.

Journal of Scientific Research, Volume 66, Issue 2, 2022

20

Institute of Science, BHU Varanasi, India

Fig. 7. Flowchart of Algorithm for Prefix

Fig. 8. State/Transition Diagram for Strings having Prefix ‘aba’

6 Conclusion

Theoretical computer science is an important area of computer

science that focuses on mathematical aspects of the theory of

computation. The major categories of formal languages in the

theory of computation including regular languages are

described in Chomsky classification of formal languages. The

regular languages find an important application in compiler

design for the recognition of tokens. This paper proposes an

algorithm for designing automata for regular languages that

accept prefix strings as input. The algorithm is discussed with

the help of an example case study. The algorithm can benefit

the novel learners in the field of automata theory and compiler

design. A learner with a better understanding of the DFA

construction algorithm will be able to undertake applications

domains like text and speech processing, pattern matching,

vending machines, traffic lights systems, etc. In the future, the

algorithm can be further optimized and simplified and can be

extended to other regular languages.

References

[1] Singh Kamaplreet & Goyal Gulshan: Algorithm Design and

String Recognition for Suffix Strings Using Deterministic Finite

Automata. IJSRR, Vol.8 No.2, ISSN: 4406-4413 (2019).

[2] Hopcroft, J. E., Motwani R. & Ullman J.D.: Introduction to

Automata Theory, Languages and Computation”, 2nd Edition,

Pearson Education, India, pp. 37-55 (2008).

[3] Martin J.C.: Introduction to languages and theory of computation,

Tata McGraw Hill pp. 277-283 (2007).

[4] Mishra K.L.P. & Chandrasekaran N.: Theory of Computer

Science Automata, Languages and Computation, 3rd Edition,

Prentice Hall of India pp. 120-129 (2004).

[5] Ullman, J. D.: Applications of language Theory to Compiler

Design. Proceedings of the spring joint computer conference

(ACM), spring, pp. 235-242 (1972).

[6] Hopcroft J.E & Ullman J.D: Introduction to Automata Theory,

Languages and Computation, Addison – Wesley, pp. 37-53

(1979).

[7] Liu, A. X., & Torng, E.: Overlay automata and algorithms for fast

and scalable regular expression matching. IEEE/ACM

Transactions on Networking, Volume 24, Issue 4, pp. 2400-2415

(2016).

[8] O’Regan G.: Automata Theory. In: Mathematics in

Computing. Undergraduate Topics in Computer Science.

Springer, Cham, https://doi.org/10.1007/978-3-030-34209-

8_23 (2015).

[9] Ather, D., Singh, R., & Katiyar, V.: An algorithm to design finite

automata that accept strings over input symbol a and b having

exactly x number of a y number of b. International Conference on

Information Systems and Computer Networks, IEEE, pages 1–4,

DOI: 10.1109/ICISCON.2013.6524162 (2013).

[10] Parekh, R. G. & Honavar, V. G.: Learning DFA from Simple

Examples. Journal of Machine Learning, Vol. 44, Issue 1-2, pp.

9-35 (2001).

[11] Ejendibia P. & Baridam B. B.: String Searching with DFA-based

Algorithm. International Journal of Applied Information Systems,

Volume 9, No. 8, pp. 1-6 (2015).

[12] Murugesan N, and Samyukthavarthini B.: A Study on Various

types of Automata. M.Phil., Dissertation, Bharathiar University

(2013).

[13] Babu Karuppiah A. & Rajaram S.: Deterministic Finite Automata

for pattern matching in FGPA for intrusion detection.

International Conference on Computer, Communication and

Electrical Technology, pp. 167-170 (2011).

[14] K.Senthil Kumar & D.Malathi: A Novel Method to Construct

Deterministic Finite Automata from A Given Regular Grammar.

International Journal of Scientific & Engineering Research,

Volume 6, Issue 3, 106, ISSN 2229-5518 (2015).

[15] Murugesan NG.: Principles of Automata theory and

Computation, Sahithi Publications (2004).

[16] Shenoy V., Aparanji U., Sripradha K. & Kumar V.: Generating

DFA Construction Problems Automatically. International Journal

of Computer Trends and Technology, Volume 4, Issue 4, pp.32-

37 (2013).

[17] Sergeyev, Yaroslav D. & Garro, Alfredo: Observability of Turing

Machines: A Refinement of the Theory of Computation.

Informatica, Volume 21, No. 3, pp. 425-454 (2010).

https://doi.org/10.1007/978-3-030-34209-8_23
https://doi.org/10.1007/978-3-030-34209-8_23

Journal of Scientific Research, Volume 66, Issue 2, 2022

21

Institute of Science, BHU Varanasi, India

[18] McCulloch, W.S., & Pitts, W: A logical calculus of the ideas

immanent in nervous activity. The bulletin of mathematical

biophysics, Volume 5, No.4, pp. 115-133 (1943).

[19] Liu D, Huang Z, Zhang Y, Guo X, Su S.: Efficient Deterministic

Finite Automata Minimization Based on Backward Depth

Information. PLoS ONE 11(11): e0165864.

https://doi.org/10.1371/journal.pone.0165864 (2016).

[20] Webber A. B.: Formal Language: A Practical Introduction.

Franklin, Beedle & Associates Inc., Wilsonville, pp. 35-43

(2008).

[21] Gribko E.: Applications of Deterministic Finite Automata. ECS

120 UC Davis, Spring, pp. 1-9 (2013).

[22] Raj N. & Dubey R.: Snakes and Stairs Game Design using

Automata Theory. International Journal of Computer Sciences

and Engineering, Volume 5, Issue 5, pp.58-62 (2017).

[23] Shakhmetova, G., Saukhanova, Z., Udzir, N. I., Sharipbay, A., &

Saukhanov, N.: Application of Pseudo-Memory Finite Automata

for Information Encryption. In IntelITSIS, pp. 330-339 (2021).

[24] Zhang K., Wang Q., Giles C.L. (2020) Adversarial Models for

Deterministic Finite Automata. In: Goutte C., Zhu X. (eds)

Advances in Artificial Intelligence. Canadian AI 2020. Lecture

Notes in Computer Science, Volume 12109. Springer, Cham.

https://doi.org/10.1007/978-3-030-47358-7_55 (2020).

[25] Grachev, P., Lobanov, I., Smetannikov, I., & Filchenkov, A.:

Neural network for synthesizing deterministic finite

automata. Procedia computer science, 119, 73-82, (2017).

[26] Krishnaprasath, V. T., and J. Preethi: Finite automata model for

leaf disease classification. Agricultural Economics (2021).

[27] Lee, J., Lee, J., Moon, S., Nam, D., & Yoo, W.: Basketball event

recognition technique using Deterministic Finite Automata

(DFA). In 2018 20th International Conference on Advanced

Communication Technology (ICACT), pp. 675-678, IEEE

(2018).

[28] Ather, Danish, Raghuraj Singh, and VinodaniKatiyar: To

Develop an Efficient Algorithm that Generalize the Method of

Design of Finite Automata that Accept “N" base Number such

that when" N" is Divided by" M" Leaves Reminder"

X". International Journal of Computer Applications 60.10 (2012).

https://doi.org/10.1371/journal.pone.0165864
https://doi.org/10.1007/978-3-030-47358-7_55

