

Volume 66, Issue 2, 2022

Journal of Scientific Research

of

The Banaras Hindu University

30

DOI: 10.37398/JSR.2022.660205

i*-Based Goal-Oriented Modeling and Requirements Specification of an Urban

Railway Interlocking System

Lokanna Kadakolmath1[0000-0001-8500-9431] and Umesh D R2[0000-0002-6813-3876]

1Acharya Institute of Technology, Bengaluru 560 107, Karnataka, India
2P.E.S College of Engineering, Mandya 571 401, Karnataka, India

 1, 2Visvesvaraya Technological University, Belagavi 590 018, Karnataka, India
1lokanna.kadakolmath@gmail.com

2drumesh@pesce.ac.in

Abstract. Urban railway interlocking system is a safety-critical

system, for which interlocking rules are well-defined by

international standards to assure safe operations. However, it is

very difficult to extract all of the safety requirements in the

requirements engineering stage itself and construct a goal model

as well. One approach to fulfill this goal is to extract safety

requirements from regulations and analyze them at the early

stage of the model. Improper specifications regarding the

environs of an interlocking system are realized to be accountable

for any faults in requirements specifications. Furthermore, non-

functional requirements are kept aside from requirements

specifications. To make an interlocking system operate in an

ultra-dependable range we need to address variability issues, so

in this paper, we used i*-based goal-oriented requirements

language called TGRL to address variability issues as well as

blend early and late requirements. The developed model can also

be visualized and analyzed using jUCMNav. Finally, the safety

requirements to be verified are specified with Formal Tropos, a

formal specification language for the i* model.

Keywords: Early Requirements, Formal Specification, Goal

Modeling, Model Checking, Railway Interlocking, Requirements

Elicitation, Safety-critical Systems, Smart Mass Transportation,

Verification.

1 Introduction

To assure that a software program accurately resolves a

specific problem, we should first properly understand and

describe what problem requirements to be solved. This looks

like common sense at first sight. But, as we will see,

identifying what the precise problem is can be hard. We must

determine, grasp, convey, examine, and decide on what

problem would be solved, why such a problem has to be

solved, and who should be required in the accountability of

resolving that problem. Generally, this process is called

requirements engineering [1].

Many studies [2], [3] have demonstrated that one of the key

causes of malfunction in system development projects

originates from a fault in the requirements engineering stage.

On the website “Forum on Risks to The Public in Computers

and Related Systems,” [4] several cases are demonstrating

inadequate requirements analysis [3]. An average of 40% of

software projects flop or do not encounter all the predictable

requirements for the reason of a fault in requirements

engineering. In 1976, Bell and Thayer have indicated that the

nonconformity of system functions about user requirements,

the incompleteness, inconsistency, and haziness of

requirements documentation is generally reducing the quality

of software [5]. Bell and Thayer conclude that “the

requirements for a system do not arise naturally; instead, they

need to be engineered and have continuing review and

revision.”

Nowadays, the reputation of goal-oriented requirements

engineering methods has improved significantly because of

the inefficiency of the typical systems analysis methods when

dealing with safety-critical systems [6]. In the requirements

phase, these methods consider requirements as encompassing

only methods and data and do not express the validation to the

certain high-level context in the problem area. Maximum

methods emphasize only on modeling and specification of the

software system. As a result, they need help for analyzing the

complex systems consisting of the system-to-be and its

environs. Also, when system functionalities are automatic or

dissimilar tasks of obligation are discovered to be denoted and

assessed then typical modeling and analysis methods do not

permit other system formations. Goal-Oriented Requirements

Engineering (GORE) tries to resolve these significant issues

[7]. GORE emphasizes the behaviors that lead to the

preparation of system requirements. The major behaviors

usually existing in GORE methods are goal extraction, goal

enhancement and distinct forms of goal evaluation, and the

allotment of goal fulfillment responsibility to actors.

According to Axel van Lamsweerde [8] “A goal is an

objective that the system should achieve through the

cooperation of agents in the software-to-be and the

environment.”

GORE visualize the given system and their environs as a

set of active agents known as actors or stakeholders. To ensure

the constraints they are assigned, each actor may restrict their

behavior. In our railway interlocking system, these actors are

LockManager, FrameAxioms, ATS, OnboardCBTC, etc. A

goal is an aim that the system should accomplish via the

assistance of actors in the system-to-be and the environs [9,

10]. A requirement is a goal. To fulfill this goal a system is

Journal of Scientific Research, Volume 66, Issue 2, 2022

31

Institute of Science, BHU Varanasi, India

dependent on a single active agent, and also it is the

responsibility of an agent. For example,

‘ManagePointLocking’ is a goal, whose fulfillment is

depending on the actor LockManager. An assumption is also a

goal whose fulfillment is dependent on fulfilling another goal.

That is to fulfill the assumption system deputes another single

active agent in the environment. For example, to fulfill the

goal ‘MovePointPosition’ it depends on another goal task

called ‘EnableRoute’ of ATS actor. Unlike goals, expectations

cannot be fulfilled by actors, they are fulfilled by

organizational standard norms and rules. For example, dwell

time and the train speed limit are depending on railway

organizational rules and norms. Unlike goals, softgoals are

non-functional requirements, whose fulfillment is not stated in

a clear-cut manner. For example, safety is a non-functional

requirement, to fulfill this requirement some tasks have a

positive impact and others have negative impacts on it.

Making complex technological systems such as urban

railway interlocking systems may require understanding,

interpreting, and refining a large informal requirement into a

concrete system. Nowadays urban railway interlocking system

is completely dependent on wayside Intelligent Transport

System (ITS) technologies like Automatic Train Controller

(ATC), Global Positioning System (GPS), Transponder tags,

Balise, Odometer, Wee-Z bond, signals, point switches, etc.

Therefore, the urban railway interlocking system has to

operate in an ultra-dependable range, so to model these

dependencies and capture safety requirements, in this paper we

used i*-based goal-oriented requirements language called

Textual Syntax for GRL (TGRL) [6] because it integrates both

Strategic Rationale (SR) and Strategic Dependency (SD)

models [6]. To verify the safety requirements of the railway

interlocking system they must be specified formally.

Therefore, in our paper, safety requirements of railway

interlocking system are specified formally by using Formal

Tropos, a formal specification language for the i* model. The

main objectives of our paper are (i) addressing variability

issues to satisfy the reliability and safety of an interlocking

system, (ii) integrating early and late requirements at the goal

level. Early requirements are usually informal and deal with

non-functional or system environment requirements. The late

requirements are usually formal and emphases on verification,

consistency, and completeness of requirements [11].

Semmak F., Laleau R., and et al. [12] within the context of

the Cycab domain enhanced requirements engineering by

using KAOS goal-oriented method. Cycab is a fully automated

public vehicle. Also, they have extended the KAOS method to

address the variability issues. This augmentation allows them

to design a goal model for variable requirements. Also, they

validated their goal model by using a software prototype

developed on a partial version of the Cycab application

domain.

Ponsard C., Massonet P., and et al. [13] for requirements

extraction and supervision of mission-critical systems they

have applied the KAOS goal-oriented requirements

engineering method. The model they presented is an extract

from the larger railways signaling specification. Their early

work document was built on the active report of state machine

diagrams with the safety requirements. For verification and

validation related to requirements analysis, they used the

FAUST toolbox.

Liaskos S., Lapouchnian A., and et al. [14] introduced a

variability-intensive method to a goal decomposition that is

adapted to help requirements identification for highly

customizable software. Their recommend method is designed

by using OR-decompositions of goals.

Gonzales-Baixauli B., Laguna M.A., and et al. [15]

described how to deal with variability issues by using a goal

model and aspect orientation. They promoted that aspect

orientation is one of the best approaches to address complex

issues.

Griss M., Favaro J., and et al. [16] described Reuse-Driven

Software Engineering Business (RSEB) method. It is a use

case-driven methodical reuse process architecture. In RSEB,

the variability issues are addressed by structuring use case and

object models using variation point with variants. They

integrated the Feature-Oriented Domain Analysis (FODA)

method into the processes and work products of the RSEB

method.

Pohl K., Bockle G., and et al. [17] described the Software

Product Line (SPL) method and the specification of a

variability model to support the development and reuse of

variable development artifacts. This method used both the

concepts of FODA and RSEB. In SPL engineering, variability

is a critical property of domain artifacts. Therefore, they used

variability modeling to obtain the variability of domain

requirements.

Dubois E., Yu E., and et al. [18] within the context of

reactive systems described three well-defined and associated

modeling activities at the requirements engineering stage.

Also, they illustrated how, KAOS, AlbertII and Timed

Automata formal languages support these three activities. To

provide a high-level model and connecting different formal

models they used the i* framework. They demonstrated their

method by using a small process control system.

Fuxman A., Liu Lin, and et al. [19] designed i* goal model

of a course-exam management case study to specify and

analyze early requirements. He also used the NuSMV model

checker to verify temporal constraints like LTL or CTL

properties on goal models.

Ponsard, C., Ramon, V., and Deprez, J. [20] focused on a

model-based method to present efficient support to the risk

assessment stage. To get automotive assets and system

properties to assess the effect of damage scenarios, detect

threats, and evaluate their feasibility, they proposed a goal-

oriented meta-model of car light control sub-system.

At the goal-oriented requirements stage, the methods like

FODA, RSEB or SPL are not properly addressing the

variability issues. To differentiate with the previous works, we

can say that our method differs from them and make use of i*-

based goal-oriented method called TGRL [6] to integrate both

early and late requirements at the goal level, and variability

issues are addressed by using strategic dependency model. To

demonstrate how our method is useful for a safety-critical

system we used an urban railway interlocking system as a case

study. Also, we formalized requirements specifications by

using Formal Tropos.

Section 2 describes the basic concepts used in the urban

railway interlocking design process. Section 3 describes the

goal-oriented modeling of an urban railway interlocking

system. Section 4 describes requirements specification and we

conclude the paper in section 5.

Journal of Scientific Research, Volume 66, Issue 2, 2022

32

Institute of Science, BHU Varanasi, India

2 Urban Railway Interlocking Systems

Rail Rapid Transit is a long-lasting and well-known national

urban transportation system. It transports a huge number of

commuters at high speed. Rail Rapid Transit is a kind of

transportation that runs separately on fixed guideways in an

urban area at high speed. With technological improvement,

today Rail Rapid Transit system is completely dependent on

ITS technologies. Therefore, nowadays Rail Rapid Transit is

also called the Smart Mass Transit System [21].

Nowadays, the Communications-Based Train Control

(CBTC) signaling system is adopted in Urban Railway

Interlocking System. It broadcast the signals among the trains

and trackside objects for traffic management and train control.

It also finds more accurately the precise location of the train.

Which results in an efficient and safe way to manage the

railway traffic flow and reduce the headway between trains

[22].

The CBTC based urban railway control systems are in

operation in Copenhagen, Paris, Singapore, Dubai, Barcelona,

and Delhi. These are also good examples of driver-less

commuter metros. Computerized systems optimize the passing

time of the metro and rise the regular speed of the system,

permitting the metros to operate more rapidly, decreasing the

time it takes a metro to reduce the speed at stations, and rising

reliability. As of 2018, Singapore’s Smart Mass Transit is the

long-sighted driverless metro in the globe, traversing 199 km

[24].

2.1 Moving Block Interlocking System

Moving Block is one of the interlocking systems normally

interconnected with the ATC system. In this interlocking

system, a train moves with a well-defined encircled block. In

this system, a train location and speed are transmitted to

wayside CBTC, which then calculates the proper safety

distance to be maintained between trains on the same railway

track, and consequently manipulates the signal positions and

speed controls for the trains on the railway track. The safe

distance among trains is the space required by a train to a full

stop. The fine control over the speeds and locations of the

trains permits a tight headway and full utilization of the track

[23]. The working procedure of moving block interlocking

system is shown in Fig. 1.

Fig. 1. Moving block interlocking in CBTC system.

The CBTC is based on the moving-block concept as shown in

Fig. 1. The working principle of the CBTC system along with

the moving block is listed below.

1. Train A computes its location with an onboard balise reader

or odometer.

2. Train A sends its location to Wayside CBTC via radio

(wireless radio unit).

3. The Wayside CBTC computes the safety distance for Train

B according to the location of Train A.

4. The Wayside radio transmits the limit authority given by

Wayside CBTC to train B.

5. Train B adjusts its speed according to the limit authority to

obey safety distance.

2.2 Interlocking Components

In the domain of railway signaling, a railway interlocking is

an automatic control system that controls the railway trackside

objects to allow a riskless function of the train traffic flow. An

interlocking state is usually well-defined by a sequence of

specific states of its objects. Fig. 2 Illustrate a simple track

layout of an urban railway interlocking system case study. The

physical and logical objects of an interlocking system are as

follows:

• Tracks: The pathway along which a train proceeds.

• Points: The railway forks allowing a train to move into a

new track.

• Signals: Permits trains to enter the track. If red light glows,

then a signal is on and it denies the train to enter into the

track, else if the green light glows, then a signal is off and

allows the train to enter into the track.

• Track Segments: Railway tracks are split into sectors

called track segments with the help of a delimiter, and each

segment is associated with a track circuit.

• Track Circuit: Continuously detect the presence of a train

in each block segment. In the DTG (distance to go

technology) version of the CBTC signaling system, each

track segment has a relay on each termination called a

“Wee-Z Bond”. It acts as a transmitter for one segment and

a receiver for the nearby segment. If a segment has an

unbroken circuit, then the segment is considered

unoccupied, and so safe for the train to pass into the

segment. If a circuit is broken, then the segment is

considered as occupied and preventing a train to pass into

the segment. The wayside ATC receives broken or

unbroken circuit information from each segment to

determine which segments are occupied and based on this

information it computes and sends safety distance to the

trains [23, 25]. In the CBTC signaling system, it is used as

a secondary device to determine train location.

• Balise: It is an electronic beacon similar to the transponder

tag, placed between rails to determine train location in case

of CBTC with a moving block system.

• Routes: Consist of sequentially joined track segments that

begin at source signal track, and finish at destination signal

track. (The routes can be set or unset).

• Sub-routes: Each track segment along the route is usually

called a sub-route. The sub-route can be locked or free.

Journal of Scientific Research, Volume 66, Issue 2, 2022

33

Institute of Science, BHU Varanasi, India

Fig. 2. Simple track layout of an urban railway interlocking system

case study.

2.3 Goals of Interlocking

If the point shifts its position when a train crosses a point in

the opposite direction, then there is a possibility that a train can

derail with the train rooting two routes. Therefore, it is

essential to lock the point once its position is set before

allowing a train to move on it. To prevent collisions, it is

essential to check the status of each segment in the track layout

and the safe distance between trains. These tasks are fulfilled

by “Interlocking” the signals with the points.

3 Goal-Oriented Modeling of an Urban

Railway Interlocking System Case Study

i* is one of the Goal-Oriented Requirements Engineering

methods. Its main aim is satisficing a goal via the assistance of

actors in the system and the environs. Therefore, it is also

known as an agent-oriented modeling framework. i* supports

modeling both early and late requirements.

In the early requirements stage, the i* is used to model the

environs of the system. It assists the analyst to analyze the

domain by graphical representation of the stakeholders of the

system, the relationship between the stakeholders and their

goals. The i* model developed at the early stage helps us in

understanding why an innovative system is required and how

it works. In the late requirements stage, the i* is used to model

both the functional and non-functional requirements of the

stakeholders [11, 26]. To model both early and late

requirements i* provides two main building blocks called

Strategic Rationale (SR) model and Strategic Dependency

(SD) model.

The SR model is used to discover the rationale behind the

activities inside the system and its environs. The SR model

assists the analyst to understand each stakeholder’s

requirements, and how these requirements are fulfilled. The

SD model is used for analyzing dependency-based

vulnerabilities in the system. It denotes the intentionality of the

goals in the organization and different techniques of achieving

a specific goal. For example, one way to fulfill the goal is

through an intentional goal dependency, that is handing over

the goal to another actor to achieve it, or handing over the goal

to yet another actor. The goal refinement by using alternative

techniques listed above not only address variability issues but

also reduces combinational explosion problems.

TGRL is i*- based Goal-oriented Requirements Language

(GRL) with textual syntax, which provides a tactic to

textualize scenarios [27]. Unlike i*, In TGRL both SR and SD

are intertwined. It supports agent-oriented modeling, goal

analysis and guides the architectural design process [6]. It’s a

part of the User Requirements Notation (URN) standard [28].

In TGRL grammar was specified with Xtext [29] often used

for the development of textual domain-specific languages.

In TGRL, modeling, analysis, and transformations are

currently supported by jUCMNav [30], so a model can also be

visualized and analyzed using jUCMNav. jUCMNav is an

Eclipse plug-in for modeling, analysis, and visualization of

URN models. It supports i* concepts and allows the user to

analyze i* constraints. It is pronounced as juicy – em – nav

(juice up your modeling).

Our proposed approach is divided into the following stages

to extract all of the safety requirements in the requirements

engineering stage itself and construct a goal model and

formalize the safety requirements.

1. Generate a goal model called the i*-SR model to elicit early

requirements.

2. Generate a goal model called the i*-SD model to fulfill our

objective of addressing variability issues to satisfy the

reliability and safety of an interlocking system.

3. Generate a goal model called i*-SR/SD model by merging

both SR and SD models using TGRL.

4. Generate a graphical model of i*-SR/SD model by using

jUCMNav for visualization and analysis purposes.

5. Generate Requirements Specification (RS) model to

formalize the extracted early requirements in first-order

linear-time temporal logic by using Formal Tropos. This

stage fulfills our objective of integrating early and late

requirements at the goal level.

3.1 i*-SR/SD Model

i*-SR/SD model is a goal-oriented model exercised to address

the issues variability. Here we initiated our model by

collecting functional and non-functional specifications of a

track layout and environment of an urban rail at the early stage.

We used TGRL to construct our proposed model. The actors

reside in our model and their goals are listed below.

1. LockManager actor has a goal of ‘ManagePointLocking’

and ‘ManageSubRouteLocking.’ To achieve the

‘ManagePointLocking’ goal, it makes use of two tasks

called ‘LockThePoint’ and ‘UnlockThePoint.’ Points must

be locked when a route is instructed and pass by a train.

Before locking the points, they must be set to the proper

position. Therefore, it depends on a goal

‘MovePointPosition’, of an actor FrameAxioms. Similarly,

before unlocking the points the sub-routes must be

unlocked. To achieve the ‘ManageSubRouteLocking’ goal

for up and down trains, it makes use of two tasks called

‘LockSubRoute’ and ‘UnlockSubRoute.’ To lock the sub-

routes track segments must be free and points must be

locked. To unlock the sub-routes, it depends on a task

‘DisableRoute’ of an actor ATS.

2. FrameAxioms actor has a goal of ‘MovePointPosition’

and ‘UpdateSegmentStatus.’ To achieve the

‘MovePointPosition’ goal, it makes use of two tasks called

‘MovePointLeft’ and ‘MovePointRight.’ Points are not

moving to any position until they are instructed to do so. To

move points a route must be enabled and points must be

Journal of Scientific Research, Volume 66, Issue 2, 2022

34

Institute of Science, BHU Varanasi, India

unlocked. Therefore, it depends on tasks ‘EnableRoute’ of

the ATS actor and ‘UnlockThePoint’ of the LockManager

actor. To achieve the ‘UpdateSegmentStatus’ goal, it makes

use of two tasks called ‘SetSegmentStatus’ and

‘UnsetSegmentStatus.’ To update the status of a segment,

that is whether a train is occupied a track segment or track

segment is free, it depends on a resource ‘Beacon.’

3. ATS actor has a goal of ‘ControlRoutes’ for controlling the

routes of active trains. To achieve the ‘ControlRoutes’ goal,

it makes use of two tasks called ‘EnableRoute’ and

‘DisableRoute.’ To disable the route a preceding sub route

of the leading train must be free. Therefore, it depends on a

resource ‘Beacon.’

4. SignalMan actor has a goal of ‘ExtinguishingSignal’ for

switching the signals to provide entrance to the trains. In

CBTC, instead of glowing the signal lights, the signals are

extinguished. To achieve the ‘ExtinguishingSignal’ goal, it

makes use of two tasks called ‘ExtinguishingAMarkerOff’

and ‘ExtinguishingAMarkerOn.’ To extinguish the ‘A’

marker off, all sub-routes and points must be locked.

Therefore, it depends on the task ‘LockSubRoute’ of an

actor LockManager. Similarly, to extinguish the ‘A’ marker

on, all sub-routes and points must be unlocked. Therefore,

it depends on the tasks ‘UnlockSubRoute’ and

‘UnlockThePoint’ of an actor LockManager. A goal

‘ExtinguishingSignal’ also depends on a goal

‘MaintainLMA’ of an actor OnboardCBTC, to obey the

Limit Movement Authority (LMA) sent by wayside CBTC.

5. Train actor has a goal of ‘MoveAndStopTrain’ to move

and stop up and down trains over the adjacent track

segments. To achieve the ‘MoveAndStopTrain’ goal, it

makes use of three tasks called ‘MoveTrain,’ ‘StopTrain,’

and ‘AccelerateOrDeaccelerateSpeed.’ To move a train, it

depends on the task ‘ExtinguishingAMarkerOff’ of an actor

SignalMan. To stop a train, it depends on the task

‘ExtinguishingAMarkerOn’ of an actor SignalMan. To

accelerate or deaccelerate speed, it depends on a task

‘ExecuteLMA’ of an actor OnboardCBTC.

6. OnboardCBTC actor has a goal of ‘MaintainLMA’ to

maintain the LMA sent by the wayside CBTC. To achieve

the ‘MaintainLMA’ goal, it makes use of two tasks called

‘ReceiveLMA’ and ‘ExecuteLMA.’

7. WaysideCBTC actor has a goal of

‘MaintainWorstCaseStoppingDistance’ to maintain a safe

distance between two trains to reduce the headway between

them. To achieve the

‘MaintainWorstCaseStoppingDistance’ goal, it makes use

of two tasks called ‘ComputeLMA’ and ‘SendLMA.’ To

compute LMA, it needs Train T1 and Train T2 current

positions and speed, so it depends on resources ‘Beacon’

and ‘Tachometer.’ It also has a softgoal ‘SafeTransport’

that has a positive impact on a goal

‘MaintainWorstCaseStoppingDistance’ and negative

impact on a goal ‘ControlRoutes.’

3.2 Graphical Model of i*-SR/SD model

For visualization and analysis purposes we converted our

textual i*-SR/SD model into a graphical model using a

jUCMNav converter [30] and it is shown in Fig. 3. As we can

see in Fig. 3, we elicited early requirements of an urban

railway interlocking system by using the SR model. In Fig. 3,

we visualized the SR model of an urban railway interlocking

system and its environs as a set of active agents known as

actors. Each actor's requirements are described in terms of SR

activity elements called goals, soft goals, tasks, resources, and

relationships between them. These activity elements are

related to each other by using decomposition links (AND-

decomposition) or means-ends links (OR-decomposition)

[31].

In Fig. 3, goals are shown in rounded rectangle shape, tasks

are shown in a hexagon shape, and soft goals are shown in

curved rectangle shape. For example, an actor WaysideCBTC

has a goal of ‘MaintainWorstCaseStoppingDistance’ to

maintain a safe distance between two trains to reduce the

headway between them. To achieve this goal, it makes use of

two tasks called ‘ComputeLMA’ and ‘SendLMA.’ These tasks

are related to the goal by using AND-decomposition. A task is

a particular activity that the actor wants to perform to achieve

the goal. A soft goal is a non-functional requirement. For

example, actor WaysideCBTC has a soft goal of ‘Safe

Transportation.’ To fulfill this soft goal, the goal

‘MaintainWorstCaseStoppingDistance’ of WaysideCBTC

actor have a positive impact and the goal ‘ControlRoutes’ of

ATS actor have negative impacts on it. A resource is denoted

by rectangle shape and it is a physical or conceptual entity. For

example, actor OnboardCBTC has a physical entity called

‘Tachometer’ to calculate the distance it travels.

In Fig. 3, the variability issues are addressed by using the

SD model. Variability is an alternative way of goal

satisfaction. The dependencies among the actors are said to be

intentional if fulfillment of one actor's goal depends on another

actor's intentional elements called goals, soft goals, tasks, or

resources. The SD model denotes the intentionality of the

goals in the organization and different techniques of achieving

a specific goal.

The first one is to allow the actor to achieve the goal that

they own. For example, allowing the actor ATS to fulfill the

goal ‘ControlRoutes,’ by fulfilling the task ‘EnableRoute’ or

fulfilling the task ‘DisableRoute.’ The second one is through

an intentional goal dependency, that is handing over the goal

to another actor to achieve it. For example, the

‘ManagePointLocking’ goal of the LockManager actor

depends on the task ‘UnsetSegmentStatus’ of goal

‘UpdateSegmentStatus’ of an actor FrameAxioms. The third

one is handing over the goal to yet another actor. For example,

the task ‘MoveTrain’ of goal ‘MoveAndStopTrain’ of an actor

Train depends on a task ‘ExtinguishingAMarkerOff’ of goal

‘ExtinguishingSignal’ of an actor SignalMan depends on a

task ‘LockSubRoute’ of goal ‘ManageSubRouteLocking’ of an

actor LockManager.

Now, let us check another example for the variability issue.

In the case of the moving block CBTC system, the train stops

only at a conflicting point. The LMA for a train always

finishes at a conflicting point in front of the train. A spot along

the track beyond which a train is not allowed to move is known

as a conflicting point. It is either static in case of switch points

or buffer stop at the station, or it is dynamic in case of the rear

of the train in front. As shown in Fig. 3, the task ‘StopTrain’

of goal ‘MoveAndStopTrain’ of an actor Train depends on a

task ‘ExtinguishingAMarkerOn’ of a goal

Journal of Scientific Research, Volume 66, Issue 2, 2022

35

Institute of Science, BHU Varanasi, India

‘ExtinguishingSignal’ of an actor SignalMan, it, in turn,

depends on a goal ‘MaintainLMA’ of an actor OnboardCBTC

in case of dynamic conflicting point. In case of static

conflicting points an actor SignalMan delegates goal

satisficing to the actor LockManager.

If variability issues are not handled properly then the

depender (an actor who depends on another actor called

dependee to fulfill his goal) is said to be vulnerable because

the dependee has not fulfilled the goal. In Fig. 3, LockManager

(depender) who depend on another actor FrameAxioms

(dependee) to fulfill its goal ‘ManagePointLocking.’ While

blending these early requirements with late requirements this

SD model helps us to analyze these variability issues. The

specification in Fig. 4 illustrates handling variability as well as

blending early requirements with late requirements in Formal

Tropos.

Fig. 3. A graphical model of i*-SR/SD goal model, validated using jUCMNav.

4 Requirements Specification

Formal Tropos is a requirements specification language for the

i* model [32]. It implements primitive concepts for translating

early requirements into late requirements, along with temporal

specification. All the objects in the domain and their

relationship are specified by using two tiers in Formal Tropos.

The structure of each object along with its properties is

specified by using the outer tier, it just looks like a class

statement. A first-order linear-time temporal logic is used

inside the inner tier to a constraint on the objects.

4.1 The Outer Tier

The outer tier of the Formal Tropos specification of an urban

railway interlocking system case study is given below. The

actors, entities, resources, and intentional elements of the i*-

SR/SD model are mapped with class statements. Every single

class holds one or more associated primitive or class type

attributes. For example, the attribute lock of goal

‘ManagePointLocking’ is a primitive attribute that has

boolean properties, to decide whether the point is locked or

not. An attribute mlp of task LockThePoint is a class type

attribute that has constant properties, which determine

references to a goal ‘ManagePointLocking’ instance. The two

actors active in a delegation relationship are represented with

attributes of dependency, as shown in Fig.4.

The modality of intentional-elements satisfaction is

described by a keyword mode. For example,

achieve&maintain is the modality of goal

‘ManagePointLocking’. It indicates that points are locked

properly and the state of the point is maintained continuously.

Specification: = (actor | entity |

intentional-element | global-properties |

dependency)

Actor LockManager

Goal Dependency ManagePointLocking Mode

achieve&maintain

Journal of Scientific Research, Volume 66, Issue 2, 2022

36

Institute of Science, BHU Varanasi, India

 Depender LockManager Dependee

FrameAxioms

 Attribute optional latch: Boolean

Task Dependency LockThePoint Mode

achieve&maintain

 Depender LockManager Dependee

FrameAxioms

 Attribute optional lock: boolean

 constant mlp:

ManagePointLocking

 Constant mpp:

MovePointPosition

Task Dependency UnlockThePoint Mode

achieve&maintain

 Depender LockManager Dependee

LockManager

 Attribute optional unLock: boolean

 constant mlp:

ManagePointLocking

Goal Dependency ManageSubRouteLocking Mode

achieve&maintain

 Depender LockManager Dependee FrameAxioms

 Attribute optional subRoute: Boolean

Task Dependency LockSubRoute Mode

achieve&maintain

 Depender LockManager Dependee

LockManager

 Attribute optional lock: boolean

 constant msr:

ManageSubRouteLocking

Task Dependency UnlockSubRoute Mode

achieve&maintain

 Depender LockManager Dependee ATS

 Attribute optional unLock: boolean

 constant msr:

ManageSubRouteLocking

 constant dr: DisableRoute

Fig. 4. Outer tier specification for the actor LockManager.

4.2 The Inner Tier

The inner tier of the Formal Tropos specification of an urban

railway interlocking system case study is given below. It

involves the constraints that express the dynamical properties

of actors, entities, resources, and intentional elements.

Invariant constraints describe specifications of a class that

should be held during the period of all instances of a class.

Usually, it describes relations between the feasible values of

attributes. For example, task dependency ‘LockThePoint’

invariant constraint describes a relation between the feasible

values of attributes of ‘ManagePointLocking’ instances. Also,

invariant constraints describe cardinality on a specified class

object. For example, the goal ‘ManageSubRouteLocking’

invariant constraint declares that at most one route can be

locked at a time. Creation constraints describe specifications

of a class that should be held during the born of a new instance

of a class. For example, the goal ‘MovePointPosition’ creation

constraint declares that all point instances should be in a

normal position when they are born. Fulfillment constraints

describe specifications of a class that should be held when the

goal of all the instances of a class is satisfied. For example, the

goal ‘ManagePointLocking’ fulfillment constraint declares

that, if a point is locked then it will not change its position or

it must be unlocked to change its position.

The above of all constraints have property and event

categories. Property categories may be constraint, assertions,

or possibilities. Constraint states that specifications are

implicitly prescribed. While assertions and possibilities are

explicitly prescribed. Assertion states that specification should

be held in all possible situations. Similarly, the possibility

states that specification should be held in at least one situation.

Event categories may be a condition, trigger, or definition. The

condition states that specifications are essential. The definition

states that specifications are essential and suitable. Trigger

states that specifications are suitable for creation and

fulfillment constraints. Formal Tropos specifications are

described with first-order linear-time temporal logic formulas

as shown in Table 1.

Table 1. First-order linear-time temporal logic formulas.

Temporal logic

formulas

Description

𝑋𝑓 It states that the formula must be true in

the next state. 𝐹𝑓 It states that the formula is true now or

finally it happens to be true in a certain

future state. 𝐺𝑓 It states that the formula is true now and

all future states. 𝑓1 𝑈 𝑓2 It states that formula f1 is true until

formula f2 is true in future states.

𝑌𝑓 It states that the formula must be true in

the earlier state. 𝐻𝑓 It states that the formula is true now and

all earlier states. 𝑃𝑓 It states that the formula is true in some

earlier states. 𝑓1 𝑆 𝑓2 It states that formula f1 is true since

formula f2 is true in earlier states.

𝐽𝑢𝑠𝑡𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑(𝑡) It states that predicate is true if

fulfillment constraint is true in the

present state but not in the earlier state

for the instance t.

𝐽𝑢𝑠𝑡𝐶𝑟𝑒𝑎𝑡𝑒𝑑(𝑡) It states that predicate is true if the

creation constraint is true in the present

state but not in the earlier state for the

instance t.

𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑(𝑡) It states that predicate is true if

fulfillment constraint is satisfied for the

instance t.

4.3 RS Model

Requirements Specification (RS) model is designed to

formalize i*-SR/SD model by using a Formal Tropos, a formal

specification language for i* model. Here, we formalize safety

requirements by focusing on each intentional element, its

environment, and its fulfillment specifications. The formal

Tropos specification of the i*-SR/SD model is given in Fig. 5.

Requirement Specification 1: A goal of managing the lock

point is fulfilled only if points are locked or unlocked.

Goal ManagePointLocking

Fulfillment constraint condition

Fulfilled (self) ⇒ (∀ lp: LockThePoint

Fulfilled (lp)) ∨ (∀up: UnLockThePoint

Fulfilled (up))

Requirement Specification 2: To lock the point it should be

first set in a proper position.

Journal of Scientific Research, Volume 66, Issue 2, 2022

37

Institute of Science, BHU Varanasi, India

Invariant constraint condition

(∀ mlp: ManagePointLocking (mlp.latch =

lock)) ⇒ (∀ mpp: MovePointPosition (Fulfilled

(mpp))

Requirement Specification 3: To unlock the point it should

first unlock the sub-route.

Invariant constraint condition

(∀ mlp: ManagePointLocking (mlp.latch =

unLock)) ⇒ (∃ usr: UnlockSubRoute

(usr.depender = self) ⇒ (Fulfilled (usr))

Requirement Specification 4: All point instances should be

in normal position when they are born.

Creation constraint condition

∀ mpp: MovePointPosition (mpp.pointPos = left)

∧ (mpp.actor = actor)

Requirement Specification 5: Point should move only if it is

unlocked and route is enabled.

Fulfillment asseration condition

(¬pointPos ∧ F pointPos) ⇒ (F ∃

ulp:UnlockThePoint (ulp.mlp.latch = unLock) ∧ (F

∃ er:EnableRoute (er.cr.route = enable))

Requirement Specification 6: A point is positioned to the left

only if it is commanded to do so.

Invariant constraint condition

(mpp.pointPos = left) ⇒ (Fulfilled

(mpp.dependee))

Requirement Specification 7: A point is positioned to the

right only if it is commanded to do so.

Invariant constraint condition

(mpp.pointPos = right) ⇒ (Fulfilled

(mpp.dependee))

Requirement Specification 8: All sub-routes of a route must

be locked if a route is enabled.

Invariant constraint condition

(cr.route = enable) ⇒ (∀ lsr: LockSubRoute

Fulfilled (lsr))

Requirement Specification 9: All track segment instances

should be in clear position when they are born.

Creation constraint condition

∀ uts: UpdateSegmentStatus (uts.segmentStatus =

clear) ∧ (uts.actor = actor)

Requirement Specification 10: To lock the sub-route, track

segment and points are commanded to the proper position.

Invariant constraint condition

(msr.subRoute = lock) ⇒ (∀ uss:

UpdateSegmentStatus Fulfilled (uss) ∧ ∀ mpp:

MovePointPosition Fulfilled (mpp))

Requirement Specification 11: A goal of controlling routes

is fulfilled only if routes are enabled or disabled.

Fulfillment constraint condition

Fulfilled (self) ⇒ (∀ er: EnableRoute

Fulfilled (er)) ∨ (∀ dr: DisableRoute

Fulfilled (dr))

Requirement Specification 12: To glow green signal

(Extinguishing A marker off) all sub-routes must be locked.

Invariant constraint condition

∀ es: ExtinguishingSignal (es.Amarker = off) ⇒

((∀ ls: LockSubRoute Fulfilled (er)) ∧ (∀ lp:

LockThePoint (lp.depender = ls.actor) ⇒

Fulfilled (lp)))

Requirement Specification 13: A point not to change its

position once the train occupies a track segment.

Global assertion

∀ lp: LockThePoint (Fulfilled (lp) ⇒ ∀ mpp:

MovePointPosition ((mpp.actor = lp.dependee)

∧ Fulfilled (mpp)) ⇒ ∀ cp:

UpdateSegmentStatus (Fulfilled (cp)) ⇒ ∃ wz:

Beacon ((wz.actor = cp.depende) ∧

(wz.segmentStatus = cp.occupied))

Requirement Specification 14: To avoid collision each train

has to maintain safe distance between them.

Global assertion

∀ t1, t2: MoveTrain G ((t1.mst.run = t1.move)

∧ (t2.mst.run = t2.move) ⇒

(t1.mst.trainPosition ≠ t2.mst.trainPosition)

∧ (t1.mst.trainSpeed ≠ t2.mst.trainSpeed) ⇒

Fulfilled (t1) ∧ Fulfilled (t2)

Requirement Specification 15: To avoid derailment a point

should be set in a proper position before allowing the train to

continue its path.

Global assertion

∀ t: MoveTrain G ((t.mst.run = t.move) ⇒ (∃

gl: ExtinguishingAMarkerOff Fulfilled (gl)) ∧

(∃ e: EnableRoute Fulfilled (e)) ⇒ (∃ pp:

MovePointPosition (¬pp.pointPos ∧ F

pp.pointPos)) ⇒ (F ∃ fa: FrameAxioms

(fa.cmdpointPos = pp.pointPos)) ⇒ (∃ lp:

LockThePoint(lp.dependee = pp.actor ∧

lp.mlp.latch = lock)))

Fig. 5. Formal Tropos specifications of an urban railway

interlocking system.

5 Conclusion

In this paper, we described goal-oriented requirements

engineering in the context of urban railway interlocking

system, which has to do with the usage of goals for extracting,

enlarging, organizing, identifying, analyzing, collaborating,

documenting, and revising requirements as i*-SR/SD model.

Our i*-SR/SD model is a textual model constructed using

TGRL. For visualization and analysis purposes we also

translated our textual model to a graphical model by using a

jUCMNav converter. In the i*-SR/SD model by using

Journal of Scientific Research, Volume 66, Issue 2, 2022

38

Institute of Science, BHU Varanasi, India

alternative ways of goal satisfaction we addressed the

variability issues like stopping the train at the conflicting point

in case of moving block CBTC system. The conflicting point

is static or dynamic, so we need to address this kind of

variability issue carefully. Also, we addressed the

vulnerability issues by using strategic dependencies. These

strategic dependencies helped us to integrate early

requirements with late requirements. Finally, we have chosen

Formal Tropos to blend early requirements with late

requirements and formalize our i*-SR/SD model, because

Formal Tropos is a specification language for the i* model and

it allows us to specify safety requirements in first-order linear-

time temporal logic formulas. In future enhancement, we

model check these early requirements specifications.

References

[1] Van Lamsweerde, A. Requirements Engineering: From System

Goals to UML Models to Software Specifications, Wiley, 2nd

Ed. (2011).

[2] Hall, T., Beechham, S., and Rainer, A. Requirements Problems

in Twelve Companies – An Empirical Analysis. In Proceedings

of the 6th International Conference on Empirical Assessment

and Evaluation in Software Engineering (EASE 2002), (2002).

[3] Finkelstein, A., and Dowell, J. A comedy of errors – the

London Ambulance Service Case Study. In Proceedings of the

8th International Workshop on Software specifications &

Design, Los Alamitos, pp. 2-4, IEEE Computer Society Press,

(1996).

[4] Ross, D.T., and Schoman Jr, K.E. Structured analysis for

requirements definition. In IEEE Transactions on Software

Engineering, pp. 6-15, (1977).

[5] Thayer, T.A., and Bell, T.E. Software requirements: Are they

really a problem? In Proceedings of 2nd International

Conference on Software Engineering, pp. 61–68, San

Francisco, (1976).

[6] Abdelzad, V., Amyot, D., Alwidian, S. A., and Lethbridge T.

C. A textual syntax with tool support for the goal-oriented

requirement language. In Proceedings of the Eighth

International i* Workshop (istar 2015), CEUR Vol-978,

(2015).

[7] Ponsard, C., Massonet, P., Molderez, J.F., and et al. Early

verification and validation of mission-critical systems. Formal

Methods in System Design 30, 233, (2007).

https://doi.org/10.1007/s10703-006-0028-8

[8] van Lamsweerde, A. Requirements engineering in the year 00:

a research perspective. Proceedings of the 2000 International

Conference on Software Engineering. ICSE 2000 the New

Millennium, pp. 5-19, (2000).

https://doi.org/10.1145/337180.337184

[9] Amyot, D. Goal modeling education with GRL: An Experience

report. In Proceedings of the 8th international i* Workshop in

Conjunction With the 23rd International Requirements

Engineering Conference, Ottawa, Canada, pp. 1-6, (2015).

[10] Van Lamsweerde, A. Goal-oriented requirements engineering:

A guided tour. In Proceedings of the 5th IEEE International

Symposium on Requirements Engineering, pp. 249-262.

Toronto, Canada. (2001).

https://doi.org/10.1109/ISRE.2001.948567

[11] Yu, E. S. K. Towards modelling and reasoning support for

early-phase requirements engineering. In Proceedings of IEEE

International Symposium on Requirements Engineering -

RE97, pp. 226-235, (1997).

[12] Semmak F., Gnaho C., and Laleau R. Extended KAOS method

to model variability in requirements. In: Maciaszek L.A.,

González-Pérez C., Jablonski S. (eds) Evaluation of Novel

Approaches to Software Engineering. ENASE 2009.

Communications in Computer and Information Science, vol.

69. Springer, Berlin, Heidelberg, (2010).

https://doi.org/10.1007/978-3-642-14819-4_14

[13] Ponsard, C., Massonet, P., Molderez, J.F., and et al. Early

verification and validation of mission-critical systems. Formal

Methods in System Design 30, 233, (2007).

https://doi.org/10.1007/s10703-006-0028-8

[14] Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., and Mylopoulos,

J. On goal-based variability acquisition and analysis. 14th

IEEE International Requirements Engineering Conference

(RE'06), pp. 79-88, (2006).

https://doi.org/10.1109/RE.2006.45

[15] Gonzales-Baixauli, B., Laguna, M.A., and Sampaio do Prado

Leite, J.C. Using Goal-models to analyse variability. First

International Workshop on Variability Modelling of Software-

Intensive Systems, VaMoS 2007, Limerick, Ireland, (2007).

[16] Griss, M. L., Favaro, J., and d'Alessandro, M. Integrating

feature modeling with the RSEB. In Proceedings of Fifth

International Conference on Software Reuse (Cat.

No.98TB100203), pp. 76-85, (1998).

https://doi.org/10.1109/ICSR.1998.685732

[17] Pohl, K., Bockle, G., and van der Linden, F. Software Product

Line Engineering: Foundations, Principles, and Techniques.

Springer, Berlin, Heidelberg, (2005).

https://doi.org/10.1007/3-540-28901-1

[18] Dubois, E., Yu E., and Petit, M. From early to late formal

requirements: a process-control case study. In Proceedings of

Ninth International Workshop on Software Specification and

Design, pp. 34-42, (1998).

https://doi.org/10.1109/IWSSD.1998.667917

[19] Fuxman, A., Liu, L., Pistore, M., and Mylopoulos, J.

Specifying and analyzing early requirements: Some

experimental results. In Proceedings of the 11th IEEE

International Requirements Engineering Conference,

Monterey Bay, CA, USA, pp. 105-114, (2003).

https://doi.org/10.1109/ICRE.2003.1232742

[20] Ponsard, C., Ramon, V. and Deprez, J. Goal and Threat

Modelling for Driving Automotive Cybersecurity Risk

Analysis Conforming to ISO/SAE 21434. In Proceedings of the

18th International Conference on Security and Cryptography

(SECRYPT 2021), pp. 833-838, (2021).

https://doi.org/10.5220/0010603008330838

[21] Global Mass Transit, Information & analysis on the global

mass transit industry.

https://www.globalmasstransit.net/index.php Accessed

2021/07/10.

[22] The Railway Technical Website. A window on the world of

railway systems, technologies, and operations.

http://www.railway-technical.com/ Accessed 2021/07/10.

[23] Rakesh, L., and Kadakolmath, L. Modeling and formal

verification of SMT rail interlocking system using PyNuSMV.

2018 4th International Conference on Recent Advances in

Information Technology (RAIT), vol. 2, pp. 667-674, (2018).

[24] https://doi.org/10.1109/RAIT.2018.8388983

[25] UITP. Statistics Brief - World Metro Figures 2018.

https://cms.uitp.org/wp/wp-

content/uploads/2020/06/Statistics-Brief-World-metro-

figures-2018V3_WEB.pdf,

[26] Accessed 2021/07/10.

[27] The Railway Technical Website. A window on the world of

railway systems, technologies, and operations.

http://www.railway-technical.com/ Accessed 2021/07/10.

https://doi.org/10.1007/s10703-006-0028-8
https://doi.org/10.1145/337180.337184
https://doi.org/10.1109/ISRE.2001.948567
https://doi.org/10.1007/978-3-642-14819-4_14
https://doi.org/10.1007/s10703-006-0028-8
https://doi.org/10.1109/RE.2006.45
https://doi.org/10.1109/ICSR.1998.685732
https://doi.org/10.1109/IWSSD.1998.667917
https://doi.org/10.1109/ICRE.2003.1232742
https://doi.org/10.5220/0010603008330838
https://www.globalmasstransit.net/index.php%20Accessed%202021/07/10
https://www.globalmasstransit.net/index.php%20Accessed%202021/07/10
https://doi.org/10.1109/RAIT.2018.8388983
https://cms.uitp.org/wp/wp-content/uploads/2020/06/Statistics-Brief-World-metro-figures-2018V3_WEB.pdf
https://cms.uitp.org/wp/wp-content/uploads/2020/06/Statistics-Brief-World-metro-figures-2018V3_WEB.pdf
https://cms.uitp.org/wp/wp-content/uploads/2020/06/Statistics-Brief-World-metro-figures-2018V3_WEB.pdf

Journal of Scientific Research, Volume 66, Issue 2, 2022

39

Institute of Science, BHU Varanasi, India

[28] Babar, Z., Nalchigar, S., Lessard, L., and et al. Instructional

experiences with modeling and analysis using the i*

framework. In Proceedings of the 1st International istar

Teaching Workshop Co-Located with the 27th International

Conference on Advanced Information Systems Engineering,

Stockholm, Sweden. pp. 31-36, (2015).

[29] Vahdat-ab. Textual modeling language for GRL.

https://github.com/vahdat-ab/TGRL Accessed 2021/07/15.

[30] ITU-T. Z.151: User requirements notation (URN) - Language

definition.

[31] https://www.itu.int/rec/T-REC-Z.151-201210-I/en Accessed

2021/07/15.

[32] Xtext. Language engineering for everyone.

http://www.eclipse.org/Xtext/ Accessed 2021/07/15.

[33] Roy JF., Kealey J., and Amyot D. Towards integrated tool

support for the user requirements notation. In: Gotzhein R.,

Reed R. (eds) System Analysis and Modeling: Language

Profiles. SAM 2006. Lecture Notes in Computer Science, vol

4320. Springer, Berlin, Heidelberg, (2006).

https://doi.org/10.1007/11951148_13

[34] Yu E., and Liu L. Modelling trust for system design using the

i* strategic actors framework. In: Falcone R., Singh M., Tan

YH. (eds) Trust in Cyber-societies. Lecture Notes in Computer

Science, vol. 2246. Springer, Berlin, Heidelberg, (2001).

https://doi.org/10.1007/3-540-45547-7_11

[35] Fuxman, A., Liu, L., Mylopoulos, J. et al. Specifying and

analyzing early requirements in Tropos. Requirements

Engineering 9, 132–150 (2004).

https://doi.org/10.1007/s00766-004-0191-7

https://doi.org/10.1007/11951148_13
https://doi.org/10.1007/3-540-45547-7_11

