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Abstract. Urban railway interlocking system is a safety-critical 

system, for which interlocking rules are well-defined by 

international standards to assure safe operations. However, it is 

very difficult to extract all of the safety requirements in the 

requirements engineering stage itself and construct a goal model 

as well. One approach to fulfill this goal is to extract safety 

requirements from regulations and analyze them at the early 

stage of the model. Improper specifications regarding the 

environs of an interlocking system are realized to be accountable 

for any faults in requirements specifications. Furthermore, non-

functional requirements are kept aside from requirements 

specifications. To make an interlocking system operate in an 

ultra-dependable range we need to address variability issues, so 

in this paper, we used i*-based goal-oriented requirements 

language called TGRL to address variability issues as well as 

blend early and late requirements. The developed model can also 

be visualized and analyzed using jUCMNav. Finally, the safety 

requirements to be verified are specified with Formal Tropos, a 

formal specification language for the i* model. 
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1 Introduction 

To assure that a software program accurately resolves a 

specific problem, we should first properly understand and 

describe what problem requirements to be solved. This looks 

like common sense at first sight. But, as we will see, 

identifying what the precise problem is can be hard. We must 

determine, grasp, convey, examine, and decide on what 

problem would be solved, why such a problem has to be 

solved, and who should be required in the accountability of 

resolving that problem. Generally, this process is called 

requirements engineering [1]. 

Many studies [2], [3] have demonstrated that one of the key 

causes of malfunction in system development projects 

originates from a fault in the requirements engineering stage. 

On the website “Forum on Risks to The Public in Computers 

and Related Systems,” [4] several cases are demonstrating 

inadequate requirements analysis [3]. An average of 40% of 

software projects flop or do not encounter all the predictable 

requirements for the reason of a fault in requirements 

engineering. In 1976, Bell and Thayer have indicated that the 

nonconformity of system functions about user requirements, 

the incompleteness, inconsistency, and haziness of 

requirements documentation is generally reducing the quality 

of software [5]. Bell and Thayer conclude that “the 

requirements for a system do not arise naturally; instead, they 

need to be engineered and have continuing review and 

revision.” 

Nowadays, the reputation of goal-oriented requirements 

engineering methods has improved significantly because of 

the inefficiency of the typical systems analysis methods when 

dealing with safety-critical systems [6]. In the requirements 

phase, these methods consider requirements as encompassing 

only methods and data and do not express the validation to the 

certain high-level context in the problem area. Maximum 

methods emphasize only on modeling and specification of the 

software system. As a result, they need help for analyzing the 

complex systems consisting of the system-to-be and its 

environs. Also, when system functionalities are automatic or 

dissimilar tasks of obligation are discovered to be denoted and 

assessed then typical modeling and analysis methods do not 

permit other system formations. Goal-Oriented Requirements 

Engineering (GORE) tries to resolve these significant issues 

[7]. GORE emphasizes the behaviors that lead to the 

preparation of system requirements. The major behaviors 

usually existing in GORE methods are goal extraction, goal 

enhancement and distinct forms of goal evaluation, and the 

allotment of goal fulfillment responsibility to actors. 

According to Axel van Lamsweerde [8] “A goal is an 

objective that the system should achieve through the 

cooperation of agents in the software-to-be and the 

environment.” 

GORE visualize the given system and their environs as a 

set of active agents known as actors or stakeholders. To ensure 

the constraints they are assigned, each actor may restrict their 

behavior. In our railway interlocking system, these actors are 

LockManager, FrameAxioms, ATS, OnboardCBTC, etc. A 

goal is an aim that the system should accomplish via the 

assistance of actors in the system-to-be and the environs [9, 

10]. A requirement is a goal. To fulfill this goal a system is 
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dependent on a single active agent, and also it is the 

responsibility of an agent. For example, 

‘ManagePointLocking’ is a goal, whose fulfillment is 

depending on the actor LockManager. An assumption is also a 

goal whose fulfillment is dependent on fulfilling another goal. 

That is to fulfill the assumption system deputes another single 

active agent in the environment. For example, to fulfill the 

goal ‘MovePointPosition’ it depends on another goal task 

called ‘EnableRoute’ of ATS actor. Unlike goals, expectations 

cannot be fulfilled by actors, they are fulfilled by 

organizational standard norms and rules. For example, dwell 

time and the train speed limit are depending on railway 

organizational rules and norms. Unlike goals, softgoals are 

non-functional requirements, whose fulfillment is not stated in 

a clear-cut manner. For example, safety is a non-functional 

requirement, to fulfill this requirement some tasks have a 

positive impact and others have negative impacts on it. 

Making complex technological systems such as urban 

railway interlocking systems may require understanding, 

interpreting, and refining a large informal requirement into a 

concrete system. Nowadays urban railway interlocking system 

is completely dependent on wayside Intelligent Transport 

System (ITS) technologies like Automatic Train Controller 

(ATC), Global Positioning System (GPS), Transponder tags, 

Balise, Odometer, Wee-Z bond, signals, point switches, etc.  

Therefore, the urban railway interlocking system has to 

operate in an ultra-dependable range, so to model these 

dependencies and capture safety requirements, in this paper we 

used i*-based goal-oriented requirements language called 

Textual Syntax for GRL (TGRL) [6] because it integrates both 

Strategic Rationale (SR) and Strategic Dependency (SD) 

models [6]. To verify the safety requirements of the railway 

interlocking system they must be specified formally. 

Therefore, in our paper, safety requirements of railway 

interlocking system are specified formally by using Formal 

Tropos, a formal specification language for the i* model. The 

main objectives of our paper are (i) addressing variability 

issues to satisfy the reliability and safety of an interlocking 

system, (ii) integrating early and late requirements at the goal 

level. Early requirements are usually informal and deal with 

non-functional or system environment requirements. The late 

requirements are usually formal and emphases on verification, 

consistency, and completeness of requirements [11]. 

Semmak F., Laleau R., and et al. [12] within the context of 

the Cycab domain enhanced requirements engineering by 

using KAOS goal-oriented method. Cycab is a fully automated 

public vehicle. Also, they have extended the KAOS method to 

address the variability issues. This augmentation allows them 

to design a goal model for variable requirements. Also, they 

validated their goal model by using a software prototype 

developed on a partial version of the Cycab application 

domain.  

Ponsard C., Massonet P., and et al. [13] for requirements 

extraction and supervision of mission-critical systems they 

have applied the KAOS goal-oriented requirements 

engineering method. The model they presented is an extract 

from the larger railways signaling specification. Their early 

work document was built on the active report of state machine 

diagrams with the safety requirements. For verification and 

validation related to requirements analysis, they used the 

FAUST toolbox. 

Liaskos S., Lapouchnian A., and et al. [14] introduced a 

variability-intensive method to a goal decomposition that is 

adapted to help requirements identification for highly 

customizable software. Their recommend method is designed 

by using OR-decompositions of goals. 

Gonzales-Baixauli B., Laguna M.A., and et al. [15] 

described how to deal with variability issues by using a goal 

model and aspect orientation. They promoted that aspect 

orientation is one of the best approaches to address complex 

issues. 

Griss M., Favaro J., and et al. [16] described Reuse-Driven 

Software Engineering Business (RSEB) method. It is a use 

case-driven methodical reuse process architecture. In RSEB, 

the variability issues are addressed by structuring use case and 

object models using variation point with variants. They 

integrated the Feature-Oriented Domain Analysis (FODA) 

method into the processes and work products of the RSEB 

method. 

Pohl K., Bockle G., and et al. [17] described the Software 

Product Line (SPL) method and the specification of a 

variability model to support the development and reuse of 

variable development artifacts. This method used both the 

concepts of FODA and RSEB. In SPL engineering, variability 

is a critical property of domain artifacts. Therefore, they used 

variability modeling to obtain the variability of domain 

requirements. 

Dubois E., Yu E., and et al. [18] within the context of 

reactive systems described three well-defined and associated 

modeling activities at the requirements engineering stage. 

Also, they illustrated how, KAOS, AlbertII and Timed 

Automata formal languages support these three activities. To 

provide a high-level model and connecting different formal 

models they used the i* framework. They demonstrated their 

method by using a small process control system. 

Fuxman A., Liu Lin, and et al. [19] designed i* goal model 

of a course-exam management case study to specify and 

analyze early requirements. He also used the NuSMV model 

checker to verify temporal constraints like LTL or CTL 

properties on goal models. 

Ponsard, C., Ramon, V., and Deprez, J. [20] focused on a 

model-based method to present efficient support to the risk 

assessment stage. To get automotive assets and system 

properties to assess the effect of damage scenarios, detect 

threats, and evaluate their feasibility, they proposed a goal-

oriented meta-model of car light control sub-system. 

At the goal-oriented requirements stage, the methods like 

FODA, RSEB or SPL are not properly addressing the 

variability issues. To differentiate with the previous works, we 

can say that our method differs from them and make use of i*-

based goal-oriented method called TGRL [6] to integrate both 

early and late requirements at the goal level, and variability 

issues are addressed by using strategic dependency model. To 

demonstrate how our method is useful for a safety-critical 

system we used an urban railway interlocking system as a case 

study. Also, we formalized requirements specifications by 

using Formal Tropos.   

Section 2 describes the basic concepts used in the urban 

railway interlocking design process. Section 3 describes the 

goal-oriented modeling of an urban railway interlocking 

system. Section 4 describes requirements specification and we 

conclude the paper in section 5. 
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2 Urban Railway Interlocking Systems 

Rail Rapid Transit is a long-lasting and well-known national 

urban transportation system. It transports a huge number of 

commuters at high speed. Rail Rapid Transit is a kind of 

transportation that runs separately on fixed guideways in an 

urban area at high speed. With technological improvement, 

today Rail Rapid Transit system is completely dependent on 

ITS technologies. Therefore, nowadays Rail Rapid Transit is 

also called the Smart Mass Transit System [21]. 

Nowadays, the Communications-Based Train Control 

(CBTC) signaling system is adopted in Urban Railway 

Interlocking System. It broadcast the signals among the trains 

and trackside objects for traffic management and train control. 

It also finds more accurately the precise location of the train. 

Which results in an efficient and safe way to manage the 

railway traffic flow and reduce the headway between trains 

[22]. 

The CBTC based urban railway control systems are in 

operation in Copenhagen, Paris, Singapore, Dubai, Barcelona, 

and Delhi. These are also good examples of driver-less 

commuter metros. Computerized systems optimize the passing 

time of the metro and rise the regular speed of the system, 

permitting the metros to operate more rapidly, decreasing the 

time it takes a metro to reduce the speed at stations, and rising 

reliability. As of 2018, Singapore’s Smart Mass Transit is the 

long-sighted driverless metro in the globe, traversing 199 km 

[24]. 

2.1 Moving Block Interlocking System 

Moving Block is one of the interlocking systems normally 

interconnected with the ATC system. In this interlocking 

system, a train moves with a well-defined encircled block. In 

this system, a train location and speed are transmitted to 

wayside CBTC, which then calculates the proper safety 

distance to be maintained between trains on the same railway 

track, and consequently manipulates the signal positions and 

speed controls for the trains on the railway track. The safe 

distance among trains is the space required by a train to a full 

stop. The fine control over the speeds and locations of the 

trains permits a tight headway and full utilization of the track 

[23]. The working procedure of moving block interlocking 

system is shown in Fig. 1. 

 

Fig. 1. Moving block interlocking in CBTC system. 

The CBTC is based on the moving-block concept as shown in 

Fig. 1. The working principle of the CBTC system along with 

the moving block is listed below. 

1. Train A computes its location with an onboard balise reader 

or odometer. 

2. Train A sends its location to Wayside CBTC via radio 

(wireless radio unit). 

3. The Wayside CBTC computes the safety distance for Train 

B according to the location of Train A. 

4. The Wayside radio transmits the limit authority given by 

Wayside CBTC to train B. 

5. Train B adjusts its speed according to the limit authority to 

obey safety distance. 

2.2 Interlocking Components 

In the domain of railway signaling, a railway interlocking is 

an automatic control system that controls the railway trackside 

objects to allow a riskless function of the train traffic flow. An 

interlocking state is usually well-defined by a sequence of 

specific states of its objects. Fig. 2 Illustrate a simple track 

layout of an urban railway interlocking system case study. The 

physical and logical objects of an interlocking system are as 

follows: 

• Tracks: The pathway along which a train proceeds. 

• Points: The railway forks allowing a train to move into a 

new track. 

• Signals: Permits trains to enter the track. If red light glows, 

then a signal is on and it denies the train to enter into the 

track, else if the green light glows, then a signal is off and 

allows the train to enter into the track.  

• Track Segments: Railway tracks are split into sectors 

called track segments with the help of a delimiter, and each 

segment is associated with a track circuit. 

• Track Circuit: Continuously detect the presence of a train 

in each block segment. In the DTG (distance to go 

technology) version of the CBTC signaling system, each 

track segment has a relay on each termination called a 

“Wee-Z Bond”. It acts as a transmitter for one segment and 

a receiver for the nearby segment. If a segment has an 

unbroken circuit, then the segment is considered 

unoccupied, and so safe for the train to pass into the 

segment. If a circuit is broken, then the segment is 

considered as occupied and preventing a train to pass into 

the segment. The wayside ATC receives broken or 

unbroken circuit information from each segment to 

determine which segments are occupied and based on this 

information it computes and sends safety distance to the 

trains [23, 25]. In the CBTC signaling system, it is used as 

a secondary device to determine train location. 

• Balise: It is an electronic beacon similar to the transponder 

tag, placed between rails to determine train location in case 

of CBTC with a moving block system. 

• Routes: Consist of sequentially joined track segments that 

begin at source signal track, and finish at destination signal 

track. (The routes can be set or unset). 

• Sub-routes: Each track segment along the route is usually 

called a sub-route. The sub-route can be locked or free. 
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Fig. 2. Simple track layout of an urban railway interlocking system 

case study. 

2.3 Goals of Interlocking 

If the point shifts its position when a train crosses a point in 

the opposite direction, then there is a possibility that a train can 

derail with the train rooting two routes. Therefore, it is 

essential to lock the point once its position is set before 

allowing a train to move on it. To prevent collisions, it is 

essential to check the status of each segment in the track layout 

and the safe distance between trains. These tasks are fulfilled 

by “Interlocking” the signals with the points. 

3 Goal-Oriented Modeling of an Urban 

Railway Interlocking System Case Study 

i* is one of the Goal-Oriented Requirements Engineering 

methods. Its main aim is satisficing a goal via the assistance of 

actors in the system and the environs. Therefore, it is also 

known as an agent-oriented modeling framework. i* supports 

modeling both early and late requirements.  

In the early requirements stage, the i* is used to model the 

environs of the system. It assists the analyst to analyze the 

domain by graphical representation of the stakeholders of the 

system, the relationship between the stakeholders and their 

goals. The i* model developed at the early stage helps us in 

understanding why an innovative system is required and how 

it works. In the late requirements stage, the i* is used to model 

both the functional and non-functional requirements of the 

stakeholders [11, 26]. To model both early and late 

requirements i* provides two main building blocks called 

Strategic Rationale (SR) model and Strategic Dependency 

(SD) model. 

The SR model is used to discover the rationale behind the 

activities inside the system and its environs. The SR model 

assists the analyst to understand each stakeholder’s 

requirements, and how these requirements are fulfilled. The 

SD model is used for analyzing dependency-based 

vulnerabilities in the system. It denotes the intentionality of the 

goals in the organization and different techniques of achieving 

a specific goal. For example, one way to fulfill the goal is 

through an intentional goal dependency, that is handing over 

the goal to another actor to achieve it, or handing over the goal 

to yet another actor. The goal refinement by using alternative 

techniques listed above not only address variability issues but 

also reduces combinational explosion problems. 

TGRL is i*- based Goal-oriented Requirements Language 

(GRL) with textual syntax, which provides a tactic to 

textualize scenarios [27]. Unlike i*, In TGRL both SR and SD 

are intertwined. It supports agent-oriented modeling, goal 

analysis and guides the architectural design process [6]. It’s a 

part of the User Requirements Notation (URN) standard [28]. 

In TGRL grammar was specified with Xtext [29] often used 

for the development of textual domain-specific languages. 

In TGRL, modeling, analysis, and transformations are 

currently supported by jUCMNav [30], so a model can also be 

visualized and analyzed using jUCMNav. jUCMNav is an 

Eclipse plug-in for modeling, analysis, and visualization of 

URN models. It supports i* concepts and allows the user to 

analyze i* constraints. It is pronounced as juicy – em – nav 

(juice up your modeling). 

Our proposed approach is divided into the following stages 

to extract all of the safety requirements in the requirements 

engineering stage itself and construct a goal model and 

formalize the safety requirements. 

1. Generate a goal model called the i*-SR model to elicit early 

requirements. 

2. Generate a goal model called the i*-SD model to fulfill our 

objective of addressing variability issues to satisfy the 

reliability and safety of an interlocking system. 

3. Generate a goal model called i*-SR/SD model by merging 

both SR and SD models using TGRL. 

4. Generate a graphical model of i*-SR/SD model by using 

jUCMNav for visualization and analysis purposes. 

5. Generate Requirements Specification (RS) model to 

formalize the extracted early requirements in first-order 

linear-time temporal logic by using Formal Tropos. This 

stage fulfills our objective of integrating early and late 

requirements at the goal level. 

3.1 i*-SR/SD Model 

i*-SR/SD model is a goal-oriented model exercised to address 

the issues variability. Here we initiated our model by 

collecting functional and non-functional specifications of a 

track layout and environment of an urban rail at the early stage. 

We used TGRL to construct our proposed model. The actors 

reside in our model and their goals are listed below. 

1. LockManager actor has a goal of ‘ManagePointLocking’ 

and ‘ManageSubRouteLocking.’ To achieve the 

‘ManagePointLocking’ goal, it makes use of two tasks 

called ‘LockThePoint’ and ‘UnlockThePoint.’ Points must 

be locked when a route is instructed and pass by a train. 

Before locking the points, they must be set to the proper 

position. Therefore, it depends on a goal 

‘MovePointPosition’, of an actor FrameAxioms. Similarly, 

before unlocking the points the sub-routes must be 

unlocked. To achieve the ‘ManageSubRouteLocking’ goal 

for up and down trains, it makes use of two tasks called 

‘LockSubRoute’ and ‘UnlockSubRoute.’ To lock the sub-

routes track segments must be free and points must be 

locked. To unlock the sub-routes, it depends on a task 

‘DisableRoute’ of an actor ATS. 

2. FrameAxioms actor has a goal of ‘MovePointPosition’ 

and ‘UpdateSegmentStatus.’ To achieve the 

‘MovePointPosition’ goal, it makes use of two tasks called 

‘MovePointLeft’ and ‘MovePointRight.’ Points are not 

moving to any position until they are instructed to do so. To 

move points a route must be enabled and points must be 
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unlocked. Therefore, it depends on tasks ‘EnableRoute’ of 

the ATS actor and ‘UnlockThePoint’ of the LockManager 

actor. To achieve the ‘UpdateSegmentStatus’ goal, it makes 

use of two tasks called ‘SetSegmentStatus’ and 

‘UnsetSegmentStatus.’ To update the status of a segment, 

that is whether a train is occupied a track segment or track 

segment is free, it depends on a resource ‘Beacon.’ 

3. ATS actor has a goal of ‘ControlRoutes’ for controlling the 

routes of active trains. To achieve the ‘ControlRoutes’ goal, 

it makes use of two tasks called ‘EnableRoute’ and 

‘DisableRoute.’ To disable the route a preceding sub route 

of the leading train must be free. Therefore, it depends on a 

resource ‘Beacon.’  

4. SignalMan actor has a goal of ‘ExtinguishingSignal’ for 

switching the signals to provide entrance to the trains. In 

CBTC, instead of glowing the signal lights, the signals are 

extinguished. To achieve the ‘ExtinguishingSignal’ goal, it 

makes use of two tasks called ‘ExtinguishingAMarkerOff’ 

and ‘ExtinguishingAMarkerOn.’ To extinguish the ‘A’ 

marker off, all sub-routes and points must be locked. 

Therefore, it depends on the task ‘LockSubRoute’ of an 

actor LockManager. Similarly, to extinguish the ‘A’ marker 

on, all sub-routes and points must be unlocked. Therefore, 

it depends on the tasks ‘UnlockSubRoute’ and 

‘UnlockThePoint’ of an actor LockManager. A goal 

‘ExtinguishingSignal’ also depends on a goal 

‘MaintainLMA’ of an actor OnboardCBTC, to obey the 

Limit Movement Authority (LMA) sent by wayside CBTC. 

5. Train actor has a goal of ‘MoveAndStopTrain’ to move 

and stop up and down trains over the adjacent track 

segments. To achieve the ‘MoveAndStopTrain’ goal, it 

makes use of three tasks called ‘MoveTrain,’ ‘StopTrain,’ 

and ‘AccelerateOrDeaccelerateSpeed.’ To move a train, it 

depends on the task ‘ExtinguishingAMarkerOff’ of an actor 

SignalMan. To stop a train, it depends on the task 

‘ExtinguishingAMarkerOn’ of an actor SignalMan. To 

accelerate or deaccelerate speed, it depends on a task 

‘ExecuteLMA’ of an actor OnboardCBTC. 

6. OnboardCBTC actor has a goal of ‘MaintainLMA’ to 

maintain the LMA sent by the wayside CBTC. To achieve 

the ‘MaintainLMA’ goal, it makes use of two tasks called 

‘ReceiveLMA’ and ‘ExecuteLMA.’   

7. WaysideCBTC actor has a goal of 

‘MaintainWorstCaseStoppingDistance’ to maintain a safe 

distance between two trains to reduce the headway between 

them. To achieve the 

‘MaintainWorstCaseStoppingDistance’ goal, it makes use 

of two tasks called ‘ComputeLMA’ and ‘SendLMA.’ To 

compute LMA, it needs Train T1 and Train T2 current 

positions and speed, so it depends on resources ‘Beacon’ 

and ‘Tachometer.’ It also has a softgoal ‘SafeTransport’ 

that has a positive impact on a goal 

‘MaintainWorstCaseStoppingDistance’ and negative 

impact on a goal ‘ControlRoutes.’  

3.2 Graphical Model of i*-SR/SD model 

For visualization and analysis purposes we converted our 

textual i*-SR/SD model into a graphical model using a 

jUCMNav converter [30] and it is shown in Fig. 3. As we can 

see in Fig. 3, we elicited early requirements of an urban 

railway interlocking system by using the SR model. In Fig. 3, 

we visualized the SR model of an urban railway interlocking 

system and its environs as a set of active agents known as 

actors. Each actor's requirements are described in terms of SR 

activity elements called goals, soft goals, tasks, resources, and 

relationships between them. These activity elements are 

related to each other by using decomposition links (AND-

decomposition) or means-ends links (OR-decomposition) 

[31].  

In Fig. 3, goals are shown in rounded rectangle shape, tasks 

are shown in a hexagon shape, and soft goals are shown in 

curved rectangle shape. For example, an actor WaysideCBTC 

has a goal of ‘MaintainWorstCaseStoppingDistance’ to 

maintain a safe distance between two trains to reduce the 

headway between them. To achieve this goal, it makes use of 

two tasks called ‘ComputeLMA’ and ‘SendLMA.’ These tasks 

are related to the goal by using AND-decomposition. A task is 

a particular activity that the actor wants to perform to achieve 

the goal. A soft goal is a non-functional requirement. For 

example, actor WaysideCBTC has a soft goal of ‘Safe 

Transportation.’ To fulfill this soft goal, the goal 

‘MaintainWorstCaseStoppingDistance’ of WaysideCBTC 

actor have a positive impact and the goal ‘ControlRoutes’ of 

ATS actor have negative impacts on it. A resource is denoted 

by rectangle shape and it is a physical or conceptual entity. For 

example, actor OnboardCBTC has a physical entity called 

‘Tachometer’ to calculate the distance it travels.  

In Fig. 3, the variability issues are addressed by using the 

SD model. Variability is an alternative way of goal 

satisfaction. The dependencies among the actors are said to be 

intentional if fulfillment of one actor's goal depends on another 

actor's intentional elements called goals, soft goals, tasks, or 

resources.  The SD model denotes the intentionality of the 

goals in the organization and different techniques of achieving 

a specific goal.  

The first one is to allow the actor to achieve the goal that 

they own. For example, allowing the actor ATS to fulfill the 

goal ‘ControlRoutes,’ by fulfilling the task ‘EnableRoute’ or 

fulfilling the task ‘DisableRoute.’ The second one is through 

an intentional goal dependency, that is handing over the goal 

to another actor to achieve it. For example, the 

‘ManagePointLocking’ goal of the LockManager actor 

depends on the task ‘UnsetSegmentStatus’ of goal 

‘UpdateSegmentStatus’ of an actor FrameAxioms. The third 

one is handing over the goal to yet another actor. For example, 

the task ‘MoveTrain’ of goal ‘MoveAndStopTrain’ of an actor 

Train depends on a task ‘ExtinguishingAMarkerOff’ of goal 

‘ExtinguishingSignal’ of an actor SignalMan depends on a 

task ‘LockSubRoute’ of goal ‘ManageSubRouteLocking’ of an 

actor LockManager. 

Now, let us check another example for the variability issue. 

In the case of the moving block CBTC system, the train stops 

only at a conflicting point. The LMA for a train always 

finishes at a conflicting point in front of the train. A spot along 

the track beyond which a train is not allowed to move is known 

as a conflicting point. It is either static in case of switch points 

or buffer stop at the station, or it is dynamic in case of the rear 

of the train in front. As shown in Fig. 3, the task ‘StopTrain’ 

of goal ‘MoveAndStopTrain’ of an actor Train depends on a 

task ‘ExtinguishingAMarkerOn’ of a goal 
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‘ExtinguishingSignal’ of an actor SignalMan, it, in turn, 

depends on a goal ‘MaintainLMA’ of an actor OnboardCBTC 

in case of dynamic conflicting point. In case of static 

conflicting points an actor SignalMan delegates goal 

satisficing to the actor LockManager. 

If variability issues are not handled properly then the 

depender (an actor who depends on another actor called 

dependee to fulfill his goal) is said to be vulnerable because 

the dependee has not fulfilled the goal. In Fig. 3, LockManager 

(depender) who depend on another actor FrameAxioms 

(dependee) to fulfill its goal ‘ManagePointLocking.’ While 

blending these early requirements with late requirements this 

SD model helps us to analyze these variability issues. The 

specification in Fig. 4 illustrates handling variability as well as 

blending early requirements with late requirements in Formal 

Tropos. 

 

 

Fig. 3. A graphical model of i*-SR/SD goal model, validated using jUCMNav. 

 

4 Requirements Specification 

Formal Tropos is a requirements specification language for the 

i* model [32]. It implements primitive concepts for translating 

early requirements into late requirements, along with temporal 

specification. All the objects in the domain and their 

relationship are specified by using two tiers in Formal Tropos. 

The structure of each object along with its properties is 

specified by using the outer tier, it just looks like a class 

statement. A first-order linear-time temporal logic is used 

inside the inner tier to a constraint on the objects. 

4.1 The Outer Tier 

The outer tier of the Formal Tropos specification of an urban 

railway interlocking system case study is given below. The 

actors, entities, resources, and intentional elements of the i*-

SR/SD model are mapped with class statements. Every single 

class holds one or more associated primitive or class type 

attributes. For example, the attribute lock of goal 

‘ManagePointLocking’ is a primitive attribute that has 

boolean properties, to decide whether the point is locked or 

not. An attribute mlp of task LockThePoint is a class type 

attribute that has constant properties, which determine 

references to a goal ‘ManagePointLocking’ instance. The two 

actors active in a delegation relationship are represented with 

attributes of dependency, as shown in Fig.4. 

The modality of intentional-elements satisfaction is 

described by a keyword mode. For example, 

achieve&maintain is the modality of goal 

‘ManagePointLocking’. It indicates that points are locked 

properly and the state of the point is maintained continuously. 

Specification: = (actor | entity | 

intentional-element | global-properties | 

dependency) 

Actor LockManager 

Goal Dependency ManagePointLocking Mode 

achieve&maintain  
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     Depender LockManager Dependee 

FrameAxioms 

     Attribute optional latch: Boolean 

Task Dependency LockThePoint Mode 

achieve&maintain  

     Depender LockManager Dependee 

FrameAxioms 

     Attribute optional lock: boolean  

               constant mlp: 

ManagePointLocking 

               Constant mpp: 

MovePointPosition 

Task Dependency UnlockThePoint Mode 

achieve&maintain  

     Depender LockManager Dependee 

LockManager      

     Attribute optional unLock: boolean 

               constant mlp: 

ManagePointLocking 

Goal Dependency ManageSubRouteLocking Mode 

achieve&maintain 

     Depender LockManager Dependee FrameAxioms 

     Attribute optional subRoute: Boolean 

Task Dependency LockSubRoute Mode 

achieve&maintain  

     Depender LockManager Dependee 

LockManager 

     Attribute optional lock: boolean  

               constant msr: 

ManageSubRouteLocking 

Task Dependency UnlockSubRoute Mode 

achieve&maintain  

     Depender LockManager Dependee ATS      

     Attribute optional unLock: boolean 

               constant msr: 

ManageSubRouteLocking 

               constant dr: DisableRoute 

Fig. 4. Outer tier specification for the actor LockManager. 

4.2 The Inner Tier 

The inner tier of the Formal Tropos specification of an urban 

railway interlocking system case study is given below. It 

involves the constraints that express the dynamical properties 

of actors, entities, resources, and intentional elements. 

Invariant constraints describe specifications of a class that 

should be held during the period of all instances of a class. 

Usually, it describes relations between the feasible values of 

attributes. For example, task dependency ‘LockThePoint’ 

invariant constraint describes a relation between the feasible 

values of attributes of ‘ManagePointLocking’ instances. Also, 

invariant constraints describe cardinality on a specified class 

object. For example, the goal ‘ManageSubRouteLocking’ 

invariant constraint declares that at most one route can be 

locked at a time. Creation constraints describe specifications 

of a class that should be held during the born of a new instance 

of a class. For example, the goal ‘MovePointPosition’ creation 

constraint declares that all point instances should be in a 

normal position when they are born. Fulfillment constraints 

describe specifications of a class that should be held when the 

goal of all the instances of a class is satisfied. For example, the 

goal ‘ManagePointLocking’ fulfillment constraint declares 

that, if a point is locked then it will not change its position or 

it must be unlocked to change its position.  

The above of all constraints have property and event 

categories. Property categories may be constraint, assertions, 

or possibilities. Constraint states that specifications are 

implicitly prescribed. While assertions and possibilities are 

explicitly prescribed. Assertion states that specification should 

be held in all possible situations. Similarly, the possibility 

states that specification should be held in at least one situation. 

Event categories may be a condition, trigger, or definition. The 

condition states that specifications are essential. The definition 

states that specifications are essential and suitable. Trigger 

states that specifications are suitable for creation and 

fulfillment constraints. Formal Tropos specifications are 

described with first-order linear-time temporal logic formulas 

as shown in Table 1. 

Table 1. First-order linear-time temporal logic formulas. 

Temporal logic 

formulas 

Description 

𝑋𝑓 It states that the formula must be true in 

the next state. 𝐹𝑓 It states that the formula is true now or 

finally it happens to be true in a certain 

future state. 𝐺𝑓 It states that the formula is true now and 

all future states. 𝑓1 𝑈 𝑓2 It states that formula f1 is true until 

formula f2 is true in future states. 

𝑌𝑓 It states that the formula must be true in 

the earlier state. 𝐻𝑓 It states that the formula is true now and 

all earlier states. 𝑃𝑓 It states that the formula is true in some 

earlier states. 𝑓1 𝑆 𝑓2 It states that formula f1 is true since 

formula f2 is true in earlier states. 

𝐽𝑢𝑠𝑡𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑(𝑡) It states that predicate is true if 

fulfillment constraint is true in the 

present state but not in the earlier state 

for the instance t. 

𝐽𝑢𝑠𝑡𝐶𝑟𝑒𝑎𝑡𝑒𝑑(𝑡) It states that predicate is true if the 

creation constraint is true in the present 

state but not in the earlier state for the 

instance t. 

𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑(𝑡) It states that predicate is true if 

fulfillment constraint is satisfied for the 

instance t. 

4.3 RS Model 

Requirements Specification (RS) model is designed to 

formalize i*-SR/SD model by using a Formal Tropos, a formal 

specification language for i* model. Here, we formalize safety 

requirements by focusing on each intentional element, its 

environment, and its fulfillment specifications. The formal 

Tropos specification of the i*-SR/SD model is given in Fig. 5. 

 

Requirement Specification 1: A goal of managing the lock 

point is fulfilled only if points are locked or unlocked.  

Goal ManagePointLocking  

Fulfillment constraint condition 

Fulfilled (self) ⇒ (∀ lp: LockThePoint 

Fulfilled (lp)) ∨ (∀up: UnLockThePoint 

Fulfilled (up)) 

Requirement Specification 2: To lock the point it should be 

first set in a proper position.  
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Invariant constraint condition 

(∀ mlp: ManagePointLocking (mlp.latch = 

lock)) ⇒ (∀ mpp: MovePointPosition (Fulfilled 

(mpp)) 

Requirement Specification 3: To unlock the point it should 

first unlock the sub-route. 

Invariant constraint condition 

(∀ mlp: ManagePointLocking (mlp.latch = 

unLock)) ⇒ (∃ usr: UnlockSubRoute 

(usr.depender = self) ⇒ (Fulfilled (usr)) 

Requirement Specification 4: All point instances should be 

in normal position when they are born. 

Creation constraint condition 

∀ mpp: MovePointPosition (mpp.pointPos = left) 

∧ (mpp.actor = actor) 

Requirement Specification 5: Point should move only if it is 

unlocked and route is enabled.  

Fulfillment asseration condition 

(¬pointPos ∧ F pointPos) ⇒ (F ∃ 

ulp:UnlockThePoint (ulp.mlp.latch = unLock) ∧ (F 

∃ er:EnableRoute (er.cr.route = enable)) 

Requirement Specification 6: A point is positioned to the left 

only if it is commanded to do so.  

Invariant constraint condition 

(mpp.pointPos = left) ⇒ (Fulfilled 

(mpp.dependee)) 

Requirement Specification 7: A point is positioned to the 

right only if it is commanded to do so. 

Invariant constraint condition 

(mpp.pointPos = right) ⇒ (Fulfilled 

(mpp.dependee)) 

Requirement Specification 8: All sub-routes of a route must 

be locked if a route is enabled.  

Invariant constraint condition 

(cr.route = enable) ⇒ (∀ lsr: LockSubRoute 

Fulfilled (lsr)) 

Requirement Specification 9: All track segment instances 

should be in clear position when they are born.  

Creation constraint condition 

∀ uts: UpdateSegmentStatus (uts.segmentStatus = 

clear) ∧ (uts.actor = actor) 

Requirement Specification 10: To lock the sub-route, track 

segment and points are commanded to the proper position.  

Invariant constraint condition 

(msr.subRoute = lock) ⇒ (∀ uss: 

UpdateSegmentStatus Fulfilled (uss) ∧ ∀ mpp: 

MovePointPosition Fulfilled (mpp)) 

Requirement Specification 11: A goal of controlling routes 

is fulfilled only if routes are enabled or disabled. 

Fulfillment constraint condition 

Fulfilled (self) ⇒ (∀ er: EnableRoute 

Fulfilled (er)) ∨ (∀ dr: DisableRoute 

Fulfilled (dr)) 

Requirement Specification 12: To glow green signal 

(Extinguishing A marker off) all sub-routes must be locked. 

Invariant constraint condition 

∀ es: ExtinguishingSignal (es.Amarker = off) ⇒ 

((∀ ls: LockSubRoute Fulfilled (er)) ∧ (∀ lp: 

LockThePoint (lp.depender = ls.actor) ⇒ 

Fulfilled (lp))) 

Requirement Specification 13: A point not to change its 

position once the train occupies a track segment. 

Global assertion 

∀ lp: LockThePoint (Fulfilled (lp) ⇒ ∀ mpp: 

MovePointPosition ((mpp.actor = lp.dependee) 

∧ Fulfilled (mpp)) ⇒ ∀ cp: 

UpdateSegmentStatus (Fulfilled (cp)) ⇒ ∃ wz: 

Beacon ((wz.actor = cp.depende) ∧ 

(wz.segmentStatus = cp.occupied)) 

Requirement Specification 14: To avoid collision each train 

has to maintain safe distance between them. 

Global assertion 

∀ t1, t2: MoveTrain G ((t1.mst.run = t1.move) 

∧ (t2.mst.run = t2.move) ⇒ 

(t1.mst.trainPosition ≠ t2.mst.trainPosition) 

∧ (t1.mst.trainSpeed ≠ t2.mst.trainSpeed) ⇒ 

Fulfilled (t1) ∧ Fulfilled (t2) 

Requirement Specification 15: To avoid derailment a point 

should be set in a proper position before allowing the train to 

continue its path. 

Global assertion 

∀ t: MoveTrain G ((t.mst.run = t.move) ⇒ (∃ 

gl: ExtinguishingAMarkerOff Fulfilled (gl)) ∧ 

(∃ e: EnableRoute Fulfilled (e)) ⇒ (∃ pp: 

MovePointPosition (¬pp.pointPos ∧ F 

pp.pointPos)) ⇒ (F ∃ fa: FrameAxioms 

(fa.cmdpointPos = pp.pointPos)) ⇒ (∃ lp: 

LockThePoint(lp.dependee = pp.actor ∧ 

lp.mlp.latch = lock))) 

Fig. 5. Formal Tropos specifications of an urban railway 

interlocking system. 

5 Conclusion  

In this paper, we described goal-oriented requirements 

engineering in the context of urban railway interlocking 

system, which has to do with the usage of goals for extracting, 

enlarging, organizing, identifying, analyzing, collaborating, 

documenting, and revising requirements as i*-SR/SD model. 

Our i*-SR/SD model is a textual model constructed using 

TGRL. For visualization and analysis purposes we also 

translated our textual model to a graphical model by using a 

jUCMNav converter. In the i*-SR/SD model by using 
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alternative ways of goal satisfaction we addressed the 

variability issues like stopping the train at the conflicting point 

in case of moving block CBTC system. The conflicting point 

is static or dynamic, so we need to address this kind of 

variability issue carefully. Also, we addressed the 

vulnerability issues by using strategic dependencies. These 

strategic dependencies helped us to integrate early 

requirements with late requirements. Finally, we have chosen 

Formal Tropos to blend early requirements with late 

requirements and formalize our i*-SR/SD model, because 

Formal Tropos is a specification language for the i* model and 

it allows us to specify safety requirements in first-order linear-

time temporal logic formulas. In future enhancement, we 

model check these early requirements specifications. 
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