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Abstract: This paper introduces a misclassified size-biased 

Poisson-Lindley distribution by compounding the size-biased 

Poisson distribution with the size-biased Lindley distribution. The 

Bayes estimation for the misclassified size-biased Poisson-Lindley 

distribution is investigated and compared with the Maximum 

Likelihood estimation. A real dataset is discussed to demonstrate 

the suitability and applicability of the proposed distribution in the 

modeling count dataset. Finally, a Monte Carlo simulation study of 

100000 simulated data is presented to investigate and compare the 

Bayes estimators and Maximum Likelihood estimators in terms of 

simulated risk for different sample sizes and varying parameters 

value.  
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I. INTRODUCTION 

The Poisson distribution is a discrete probability distribution 

that expresses the probability of a given number of events 

occurring in a fixed interval of time and /or space if these events 

occur with a known average rate and are independent of time 

since the last events. So the Poisson distribution can be applied 

to systems with a large number of possible events, each of which 

is rare in probability theory and statistics. Ladislaus Bortkiewicz 

(1898) used this distribution when he was tasked with 

investigating the number of soldiers in the Prussian army killed 

accidentally by horse kicks. This experiment introduced the 

Poisson distribution to the field of reliability engineering. 

Shanker et al. (2013) introduced the Lindley distribution with 

two parameters by considering the survival and waiting time 

data. Ghitany et al. (2008) compared two models and showed 

that the Lindley distribution provides an effective model than the 

exponential distribution. Elbatal et al. (2013) proposed that 

Lindley distribution is a mixture of gamma and exponential 

distribution. Shanker et al. (2013) compared one parameter 

Lindley distribution with two-parameter Lindley distribution. 

Mervoci and Sharma (2014) extended the Lindley distribution 

called the beta Lindley distribution. At the same time, Singh et 

al. (2014) gave truncated Lindley distribution. Shanker et al. 

(2015) have done a critical and comparative study on 

applications of Lindley and exponential distributions for 

modeling lifetime data from biological sciences and engineering 

and observed that there are many lifetime data where 

exponential distribution gives a better fit than Lindley 

distribution. 

Borah and DekaNath (2001) enlarged a Poisson Lindley 

distribution (PLD) with a further study called inflated Poisson 

Lindley distribution. Whereas Ghitany et al. (2008) examined 

the PLD to model count data, as well as Ghitany et al. (2008), 

aim their study for data does not include zero counts since 

Zakerzadeh and Dolati (2009) described a generalized form of 

Lindley distribution with three parameters. Therefore, Ghitany et 

al. (2011) worked on modeling survival data and introduced a 

Lindley distribution with two parameters called weighted 

Lindley distribution. However, Lord and Geedipally (2011) 

proposed a new distribution called negative binomial Lindley, 

which contains two parameters for crash count data. Ghitanyet 

al. (2008) discussed statistical properties including moments 

based coefficients, hazard rate function, mean residual life 

function, mean deviations, stochastic ordering, Renyi entropy 
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measure, order statistics, Bonferroni and Lorenz curves, stress-

strength reliability, along with the estimation of parameter and 

application to model waiting for time data in a bank. A detailed 

and critical study on applications of PLD for count data relating 

to biological sciences has been done by Shanker and Hagos 

(2015), and found that PLD gives a much closer fit than Poisson 

distribution. 

Fisher (1934) introduced Size-biased distribution to model 

ascertainment bias. It is a particular case of the more general 

form known as weighted distribution. Weighted distributions 

were later formalized in a unifying theory by Rao (1965). Such 

distributions arise naturally in practice when observations from a 

sample are recorded with unequal probability, such as from 

probability proportional to size (PPS) designs. 

Shankeret al. (2015) have studied a size-biased Poisson 

Lindley distribution (SBPLD) and its applications in detail to 

model data relating to thunderstorms and found that the SBPLD 

is a suitable model for thunderstorms data. This distribution has 

wide applications in the theory of accident proneness. It arises 

from the Poisson distribution when its parameter follows a 

continuous Lindley distribution. Sankaran (1970) investigated 

this distribution with application to errors and accident data. 

Sankaran (1970) has obtained its moments and discussed some 

of the statistical properties, estimation of parameters, and 

applications to model count data.  

The primary motivation of this paper is to study 

misclassification in Size Biased Poisson Lindley distribution. 

Bayes estimation method is applied to estimate the parameters of 

the distribution. A simulation study is carried out to study the 

effectiveness of the estimation method.  

II.  MODEL DESCRIPTION 

A discrete random variable 𝑋  is said to have a Poisson 

distribution with parameter 𝜆 > 0,  if for  𝑘 = 0, 1, 2, …. , the 

probability mass function of 𝑋 is given by  

𝑓(𝑘; 𝜆) = 𝑃𝑟(𝑋 = 𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
                                                       (1) 

The positive real number 𝜆 is equal to the expected value of 𝑋 

and also to its variance, i.e.𝜆 = 𝐸(𝑋) = 𝑉𝑎𝑟(𝑋) 

A one-parameter Lindley distribution with parameter θ is 

defined by its probability density function given as 

𝑓(𝑥 ;  𝜃) =
𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥;  𝑥 > 0,

𝜃 > 0                                (2) 

If the random variable 𝑋  has distribution, 𝑓 (𝑥;  𝜃) , with 

unknown parameters 𝜃 , then the corresponding weighted 

distribution is of the form 

𝑓𝑤(𝑥 ;  𝜃) =
𝑤(𝑥) 𝑓(𝑥 ;  𝜃)

𝐸(𝑤(𝑥))
                                                            (3) 

Where 𝑤(𝑥)  is a non–negative weight function such that 

𝐸(𝑤(𝑥))exists. 

By taking weight  𝑤(𝑥) = 𝑥, the size–biased distribution can 

be determined with pmf. 

𝑓∗(𝑥 ;  𝜃) =
𝑥 𝑓(𝑥; 𝜃)

𝐸(𝑥)
                                                                      (4) 

Ghitany and Al-Muttairi (2008) investigated and showed that 

the size-biased Poisson Lindley distribution also arises from the 

size-biased Poisson distribution with pmf: 

     𝑔(𝑥|𝜆) = 𝑒−𝜆
𝜆𝑥−1

(𝑥 − 1)!
   , 𝑥 = 1, 2, 3……   𝜆 > 0                  (5) 

When its parameter 𝜆 follows a size–biased Lindley model 

with pdf. 

ℎ(𝜆 ;  𝜃) =
𝜃3

(𝜃 + 2)
 𝜆(1 + 𝜆)𝑒−𝜃𝜆 , 𝜆 > 0, 𝜃 > 0                      (6) 

A size-biased Poisson Lindley distribution (SBPLD), 

introduced by Ghitany and Al- Mutairi (2008), having parameter 

𝜃 is defined by its probability mass function (pmf)  

𝑃(𝑥)  = 𝑝(𝑥; 𝜃) =
𝑥𝜃3(𝑥 + 𝜃 + 2)

(𝜃 + 2)(𝜃 + 1)𝑥+2
                                        (7) 

       𝑥 = 1, 2, 3, … , 𝜃 > 0   

Where the mean of the Poisson Lindley distribution,   𝜇 =
𝜃+2

𝜃(1+𝜃)
 and 𝜃  is known as a parameter of the distribution. It 

would be noted that the SBPLD is a simple size-biased version 

of Poisson-Lindley distribution (PLD) having pmf 

𝑓0(𝑥; 𝜃) =
𝜃2(𝑥 + 𝜃 + 2)

(𝜃 + 1)𝑥+3
, 𝑥 = 0, 1, 2, …𝑎𝑛𝑑  𝜃 > 0     

and 

∑𝑃𝑥(𝜃) =
𝜃3

(𝜃 + 2)(1 + 𝜃)2
∑

𝑥(𝑥 + 𝜃 + 2)

(1 + 𝜃)𝑥
= 1

∞

𝑥=1

∞

𝑥=1

 

If the random variables follow the Poisson probability law, 

then the n problem of misclassification may arise where specific 

counts (𝑐 + 1)  are sometimes reported as the count 𝑐 . Cohen 

(1960) studied this situation in a general way called the 

misclassified Poisson distribution.  

Suppose the number of defects in a unit during the production 

of the units follows a Poisson Lindley distribution with 

parameter 𝜃  and let 𝛼  be the probability that the unit which 

contains (𝑐 + 1)   defects is misclassified by reporting it as 

having only 𝑐 defects. In all other cases, the observations and 

reporting of defects are found correct.  

Let 𝑋  denote the number of defects reported in a produced 

unit. Then  

for            𝑋 = 𝑐, 

𝑝(𝑐; 𝜃, 𝛼) = 𝑝(𝑐) + 𝛼 𝑝(𝑐 + 1) 

                          =
𝜃3

(𝜃 + 2)(𝜃 + 1)𝑐+3
[𝑐(𝑐 + 𝜃 + 2)(𝜃 + 1)

+ 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)];                                 (8) 

for             𝑋 = 𝑐 + 1, 

𝑝(𝑐 + 1; 𝜃, 𝛼) = 𝑝(𝑐 + 1) − 𝛼 𝑝(𝑐 + 1) 



Journal of Scientific Research, Volume 66, Issue 5, 2022 

   122 
Institute of Science, BHU Varanasi, India 

                          = (1 − 𝛼)(𝑐

+ 1) [
𝜃3(𝑐 + 𝜃 + 3)

(𝜃 + 2)(𝜃 + 1)𝑐+3
] ;                       (9) 

and 

for 𝑋 ∈ 𝑆, 

𝑝(𝑥; 𝜃, 𝛼)    =  𝑝(𝑥) 

                     =
𝑥𝜃3(𝑥 + 𝜃 + 2)

(𝜃 + 2)(𝜃 + 1)𝑥+2
 ,    𝜃 > 0,    0 < 𝛼 < 1    (10) 

Thus, from Eq. (8), Eq. (9), and Eq. (10), we get the pmf of 

Misclassified Size-Biased Poisson Lindley (MSBPL) 

distribution of the random variable 𝑥 as  

   𝑝(𝑥; 𝜃, 𝛼)

=

{
  
 

  
 

𝜃3

(𝜃 + 2)(𝜃 + 1)𝑐+3
[𝑐(𝑐 + 𝜃 + 2)(𝜃 + 1) + 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)], 𝑓𝑜𝑟 𝑥 = 𝑐

(1 − 𝛼)(𝑐 + 1) [
𝜃3(𝑐 + 𝜃 + 3)

(𝜃 + 2)(𝜃 + 1)𝑐+3
] , 𝑓𝑜𝑟 𝑥 = 𝑐 + 1                                   

𝑥𝜃3(𝑥 + 𝜃 + 2)

(𝜃 + 2)(𝜃 + 1)𝑥+2
,    𝑓𝑜𝑟 𝑥 ∈ 𝑆                                                                                  

 

(11) 

Where  𝑆  is a subset of the set 𝐼 of non–negative integers, not 

containing 𝑐 and 𝑐 + 1, that is,𝑆 = 𝑇 − [𝑐, 𝑐 + 1], where T is a 

set of non–negative integers.  

The mean of the MSBPL distribution is 

𝜇1
′ = 𝐸(𝑥) 

=
𝜃2 + 4𝜃 + 6

𝜃(𝜃 + 2)
−
𝛼(𝑐 + 1)𝜃3(𝑐 + 𝜃 + 3)

(𝜃 + 2)(𝜃 + 1)𝑐+3
                 (12) 

and 

  𝜇2
′ = 𝐸(𝑥2) 

=∑𝑥2𝑝(𝑥; 𝜃, 𝛼) 

        = 𝑐2𝑝(1; 𝜃, 𝛼) + 𝑐2. 𝑝(2;  𝜃, 𝛼) + ∑𝑥2. 𝑝(𝑥;  𝜃, 𝛼)

∞

𝑥=3

 

=∑𝑥2
𝑥𝜃3(𝑥 + 𝜃 + 2)

(𝜃 + 2)(𝜃 + 1)𝑥+2

∞

𝑥=1

−
𝛼(2𝑐 + 1)(𝑐 + 1)𝜃3(𝑐 + 𝜃 + 3)

(𝜃 + 2)(𝜃 + 1)𝑐+3
           (13) 

Now, the first four moments about the origin and the variance 

of the SBPLD are given by 

𝜇1
′ ∗  =

𝜃2 + 4𝜃 + 6

𝜃(𝜃 + 2)
 

𝜇2
′ ∗ =

𝜃3 + 8𝜃2 + 24𝜃 + 24

𝜃2(𝜃 + 2)
 

𝜇3
′ ∗  =

𝜃4 + 16𝜃3 + 78𝜃2 + 168𝜃 + 120

𝜃3(𝜃 + 2)
 

𝜇4
′ ∗  =

𝜃5 + 32𝜃4 + 240𝜃3 + 840𝜃2 + 1320𝜃 + 720

𝜃2(𝜃 + 2)
 

𝜇2
∗   = 𝜇2

′ ∗ − (𝜇1
′ ∗)2 =

2(𝜃3 + 6𝜃2 + 12𝜃 + 6)

𝜃2(𝜃 + 2)2
 

So by using the results of SBPL distribution in Eq. (13), we 

get  𝜇2
′  of MSBPL distribution as 

𝜇2
′   =

2(𝜃3 + 6𝜃2 + 12𝜃 + 6)

𝜃2(𝜃 + 2)2
+ (

𝜃2 + 4𝜃 + 6

𝜃(𝜃 + 2)
)

2

−
𝛼(2𝑐 + 1)(𝑐 + 1)𝜃3(𝑐 + 𝜃 + 3)

(𝜃 + 2)(𝜃 + 1)𝑐+3
           (14) 

Hence the variance of MSBPL distribution is 

𝜇2  =
2(𝜃3 + 6𝜃2 + 12𝜃 + 6)

𝜃2(𝜃 + 2)2

−
𝛼(𝑐 + 1)𝜃2(𝑐 + 𝜃 + 3)

(𝜃 + 1)𝑐+3(𝜃 + 2)2
[𝜃(2𝑐 + 1)(𝜃 + 2)

− 2(𝜃2 + 4𝜃 + 6) +
𝛼(𝑐 + 1)𝜃4(𝑐 + 𝜃 + 3)

(𝜃 + 1)𝑐+3
] 

(15) 

 

III. MAXIMUM LIKELIHOOD ESTIMATION 

Suppose that a random sample of 𝑁 observations of the 

random variable 𝑋 is taken from the distribution given in Eq. 

(4). Let 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑖  , … , 𝑥𝑘  (𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ {1, 2, …∞} be the 

possible values of random variable 𝑋 in a random sample and  

𝑛𝑘   denotes the number of observations corresponding to the 

value 𝑥𝑘 in the sample, then wehave∑ 𝑛𝑖 = 𝑁
𝑘
𝑖=1 . 

The likelihood function 𝐿  of such a sample is given by 

𝐿 ∝∏𝑃𝑖
𝑛𝑖

𝑘

𝑖=1 

(16) 

    = {𝑃(𝐶;𝜃,𝛼)}
𝑛𝑐
{𝑃(𝐶+1;𝜃,𝛼)}

𝑛𝑐+1
∏{𝑃(𝑖;𝜃,𝛼)}

𝑛𝑖

𝑖∈𝑆

 

Where  𝑆  is a subset of the set 𝐼 of non–negative integers (not 

containing 𝑐 𝑎𝑛𝑑 𝑐 + 1).  

That is, 𝑆 = 𝑇 − {𝑐, 𝑐 + 1}, where T is a set of non–negative 

integers and c is constant, which is independent of  θ and α and 

is given by 

𝑐 =
𝑁!

∏ 𝑛𝑖!
𝑘
𝑖=1

 

Trivedi and Patel (2013) have derived the equations 

 𝛼 = [
{𝑛𝑐(𝑐 + 1)(𝑐 + 𝜃 + 3)} − {𝑐𝑛𝑐+1(𝑐 + 𝜃 + 2)(𝜃 + 1)}

(𝑐 + 1)(𝑐 + 𝜃 + 3)(𝑛𝑐+𝑛𝑐+1)
]        (17) 

and 

𝑁 [
2(𝜃 + 3)

𝜃(𝜃 + 2)
] −

(𝑐 + 3)(𝑛𝑐+𝑛𝑐+1)

(𝜃 + 1)
+

𝑛𝑐+1
𝑐 + 𝜃 + 3

+
𝑛𝑐[𝑐(𝑐 + 2𝜃 + 3) + 𝛼(𝑐 + 1)]

[𝑐(𝑐 + 𝜃 + 2)(1 + 𝜃) + 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)]

−∑𝑛𝑖
𝑖∈𝑆

[
(𝑥 + 2)(𝑥 + 𝜃 + 2) − (𝜃 + 1)

(𝜃 + 1)(𝑥 + 𝜃 + 2)
] = 0 

(18) 

Substituting 𝛼 from Eq. (17) in Eq. (18), we get an equation 

containing only parameter 𝜃, say 𝑔(𝜃) = 0, and by applying any 

iteration method (e.g., Newton – Raphson), we can solve it for 

𝜃; which we call MLE of 𝜃. By substituting this value of 𝜃 in 

Eq. (17), we get MLE of 𝛼. 
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IV. BAYES ESTIMATION 

In this section, the Bayesian approach is used to derive 

estimates of the parameters 𝜃and 𝛼. Here assume 𝜃  and 𝛼  are 

both unknown. It is customary to assume that a-priori𝜃 and 𝛼 are 

independent since whatever prior belief one may have about 𝜃, 

is not likely to be significantly influenced by one’s knowledge 

about  𝛼. (Box and Tiao, 1973). Thus, joint prior of 𝜃 and 𝛼 is 

given by 

 𝑔(𝜃, 𝛼) = 𝑔1(𝛼)𝑔2(𝜃)      

The prior density should be chosen both for mathematical 

tractability and especially for the ability to represent the prior 

technical knowledge.  

Here we assume a uniform prior for parameter 𝛼,  

i.e. 𝑔1(𝛼) = 1, 0 < 𝛼 < 1                                                       (19)                     

and exponential prior for parameter 𝜃,  

i.e. 𝑔2(𝜃) =
1

𝛽
𝑒
−
𝜃

𝛽, 𝜃 > 0, 𝛽 >

0                                                  (20)Hence the joint prior of 

𝜃 and α is given by  

𝑔(𝜃, 𝛼) = 𝑔1(𝛼)𝑔2(𝜃)                                                                   (21) 

If 𝐿  is the likelihood function indexed by a continuous 

parameter Θ = (𝜃, 𝛼) , with prior density 𝑔(𝜃, 𝛼)  then the 

posterior density for Θ is given by  

𝜋(Θ|𝑥) =
𝐿(Θ)𝑔(𝜃, 𝛼)𝑑𝜃 𝑑𝛼

∫ 𝐿(Θ)𝑔(𝜃, 𝛼)𝑑𝜃 𝑑𝛼
Θ

                                                (22) 

The Bayes estimation of an arbitrary function of Θ, say u(Θ) 

under the squared error loss function, is given by  

�̂�𝐵𝑆 = 𝐸𝜋𝑢(Θ) =
∫ 𝑢(Θ)𝐿(Θ)𝑔(𝜃, 𝛼)𝑑𝜃 𝑑𝛼
Θ

∫ 𝐿(Θ)𝑔(𝜃, 𝛼)𝑑𝜃 𝑑𝛼
Θ

 

Due to the complex form of the likelihood function (16), 

neither the posterior distribution nor the Bayes estimate 

simplifies to a closed-form. Lindley’s approximation provides a 

numerical approximation method that is useful when the number 

of parameters is small ( ≤ 5,  Press (1989)). This method 

provides an approximation for  

𝐼(𝑥1, 𝑥2, …… , 𝑥𝑛) =
∫ 𝑢(Θ)𝐿(Θ)𝑔(𝜃, 𝛼)𝑑𝜃 𝑑𝛼
Θ

∫ 𝐿(Θ)𝑔(𝜃, 𝛼)𝑑𝜃 𝑑𝛼
Θ

                   (23) 

For the particular case of two parameters Θ =

(𝜃1, 𝜃2)Lindley’s approximation of (Eq. (23) reduces to  

𝐼(𝑥1, 𝑥2, …… , 𝑥𝑛)                   

≅    𝑢(Θ̂)

+
1

2
∑∑{[

𝜕2𝑢(Θ)

𝜕𝜃𝑖𝜕𝜃𝑗

2

𝑗=1

2

𝑖=1

+ 2(
𝜕𝑢(Θ)

𝜕𝜃𝑖
)(
𝜕log𝑔(Θ)

𝜕𝜃𝑗
)] �̂�𝑖𝑗}|

𝜃=�̂�

+
1

2
{
𝜕3log𝐿(Θ)

𝜕𝜃1
3 [

𝜕𝑢(Θ)

𝜕𝜃1
�̂�11

2 +
𝜕𝑢(Θ)

𝜕𝜃2
�̂�11�̂�21]

+
𝜕3log𝐿(Θ)

𝜕𝜃1
2𝜕𝜃2

[3
𝜕𝑢(Θ)

𝜕𝜃1
�̂�11�̂�12

+
𝜕𝑢(Θ)

𝜕𝜃2
(�̂�11�̂�22 + 2�̂�12

2)]

+
𝜕3log𝐿(Θ)

𝜕𝜃1𝜕𝜃2
2 [3

𝜕𝑢(Θ)

𝜕𝜃2
�̂�12�̂�22

+
𝜕𝑢(Θ)

𝜕𝜃1
(�̂�11�̂�22 + 2�̂�12

2)]

+
𝜕3log𝐿(Θ)

𝜕𝜃2
3 [

𝜕𝑢(Θ)

𝜕𝜃1
�̂�12�̂�22

+
𝜕𝑢(Θ)

𝜕𝜃2
�̂�22

2]}|
𝜃=�̂�

 

(24) 

Where �̂�𝑖𝑗  denotes the (𝑖, 𝑗)  element of the inverse of the 

observed information matrix given as  

Λ̂ =

[
 
 
 
 
𝜕2log𝐿(Θ)

𝜕𝜃1
2

𝜕2log𝐿(Θ)

𝜕𝜃1𝜕𝜃2
𝜕2log𝐿(Θ)

𝜕𝜃1𝜕𝜃2

𝜕2log𝐿(Θ)

𝜕𝜃2
2 ]

 
 
 
 

|
|

𝜃=�̂�

                                        (25) 

Under mild conditions, this observed information matrix is a 

consistent estimator of the Fisher information matrix.  

In our case, we take 𝜃1 = 𝜃 , 𝜃2 = 𝛼  and u (Θ) = 𝑢(𝜃, 𝛼) =

a function of θ and α. 

All functions on the right-hand side of Eq. (24) and Eq. (25) 

are evaluated at �̂�and �̂�. Replacing the unknown parameters by 

their maximum likelihood estimates. 

When u(Θ) = 𝜃, Eq. (24) reduces to  

𝐼(𝑥1, 𝑥2, …… , 𝑥𝑛)

≅ �̂� −
�̂�11
𝛽2
 

+
1

2
{
 

 
𝜕3log𝐿(Θ)

𝜕𝜃3
�̂�11

2 +
𝜕3log𝐿(Θ)

𝜕𝜃2𝜕𝛼
3�̂�11�̂�12

+
𝜕3log𝐿(Θ)

𝜕𝜃𝜕𝛼2
(�̂�11�̂�22 + 2�̂�12

2) +
𝜕3log𝐿(Θ)

𝜕𝛼3
�̂�12�̂�22}

 

 

||

𝜃=�̂�

 

(26) 

Eq. (26) provides the Bayes estimate for 𝜃 under squared error 

loss. 

When u(Θ) = 𝛼, Eq. (24) reduces to  
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𝐼(𝑥1, 𝑥2, …… , 𝑥𝑛)

≅ �̂� −
�̂�21
𝛽2

+
1

2
{
 

 
𝜕3log𝐿(Θ)

𝜕𝜃3
�̂�11�̂�21 +

𝜕3log𝐿(Θ)

𝜕𝜃2𝜕𝛼
(�̂�11�̂�22 + 2�̂�12

2)

+
𝜕3log𝐿(Θ)

𝜕𝜃𝜕𝛼2
3�̂�12�̂�22 +

𝜕3log𝐿(Θ)

𝜕𝛼3
�̂�22

2

}
 

 

||

𝛼=�̂�

 

(27) 

Eq. (27) provides the Bayes estimate for 𝛼  under squared 

error loss. 

To evaluate Eq. (26) and Eq. (27), the following third 

derivatives are obtained from Eq. (16) to Eq. (18) 

𝜕3 ln 𝐿(Θ)

𝜕𝜃3
= 𝑁 [

6

𝜃3
−

2

(𝜃 + 2)3
] −

2(𝑐 + 3)(𝑛𝑐+𝑛𝑐+1)

(𝜃 + 1)3
+

2𝑛𝑐+1
(𝑐 + 𝜃 + 3)3

 

 +𝑛𝑐
1

{[𝑐(𝑐 + 𝜃 + 2)(𝜃 + 1)] + 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)}2
[−2𝑐[𝑐(𝑐 + 2𝜃 + 3)

+ 𝛼(𝑐 + 1)]

−
[𝑐(𝑐 + 2𝜃 + 3) + 𝛼(𝑐 + 1)]32[[𝑐(𝑐 + 𝜃 + 2)(𝜃 + 1)] + 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)]

{[𝑐(𝑐 + 𝜃 + 2)(𝜃 + 1)] + 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)}2
] 

                           −∑𝑛𝑖
𝑖∈𝑆

[
2(𝑥 + 2)

(𝜃 + 1)3
−

2

(𝑥 + 𝜃 + 2)3
] 

(28) 

𝜕3log𝐿(Θ)

𝜕𝛼3
 =

2𝑛𝑐(𝑐 + 1)
3(𝑐 + 𝜃 + 3)3

[𝑐(𝑐 + 𝜃 + 2)(𝜃 + 1) + 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)]3

−
2𝑛𝑐+1
(1 − 𝛼)3

 

(29) 

𝜕3log𝐿(Θ)

𝜕𝜃𝜕𝛼2
 

= −𝑛𝑐(𝑐 + 1)
2 (

(2(𝑐 + 𝜃 + 3))

[𝑐(𝑐 + 𝜃 + 2)(𝜃 + 1) + 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)]2

−
((𝑐 + 𝜃 + 3)2[𝑐(𝑐 + 2𝜃 + 3) + 𝛼(𝑐 + 1)})

[𝑐(𝑐 + 𝜃 + 2)(𝜃 + 1) + 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)]4
) 

(30) 

 

𝜕3log𝐿(Θ)

𝜕𝜃2𝜕𝛼
 

= 𝑛𝑐(𝑐 + 1) {
−(𝑐(𝑐 + 2𝜃 + 3) + 𝛼(𝑐 + 1))

[𝑐(𝑐 + 𝜃 + 2)(1 + 𝜃) + 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)]2
       

−
(𝑐 + 𝜃 + 3)2𝑐 + 𝑐(𝑐 + 2𝜃 + 3) + 𝛼(𝑐 + 1)

[𝑐(𝑐 + 𝜃 + 2)(1 + 𝜃) + 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)]2

+
2(𝑐 + 𝜃 + 3)[𝑐(𝑐 + 2𝜃 + 3) + 𝛼(𝑐 + 1)]2

[𝑐(𝑐 + 𝜃 + 2)(1 + 𝜃) + 𝛼(𝑐 + 1)(𝑐 + 𝜃 + 3)]3
} 

(31) 

 

V. REAL DATA APPLICATION 

This section analyzes a real data set to illustrate the proposed 

estimation method described in the preceding section. The size-

biased distributions have been used in modeling data relating to 

situations when organisms occur in groups, and group size 

influences the probability of detection. Keith and Meslow (1968) 

studied animal abundance data in which snowshoe hares were 

captured over seven days. A hare was marked and released after 

it had been captured. Subsequently, the same hare may or may 

not have been recaptured. Those captured on a previous day 

were identified by marking done on their first day of capture. 

Among 261 hares caught over seven days, 184 were caught 

once, 55 were caught twice, 14 were caught three times, four 

were caught four times, and four were caught five times. One 

question arises about whether the animal abundance data fit the 

MSBPL distribution or not. The following table shows the fitting 

of the MSBPL distribution to the data. 

Table 1: Summary of fitting the MSBPL distribution to 

animal abundance data. 

𝑋𝑖 𝑂𝑖  𝐸𝑖 

  MSBPL 

1 184 182.8471 

2 55 53.2472 

3 14 18.77413 

4 4 4.717652 

5 4 1.413953 

T

otal 
261 261 

 𝜃 ̃ = 4.84502463 

 �̃� = 0.18986707 

𝜒2 2.98961 

𝑝 − 

value 
0.0875 

The above-reported 𝑝 − 𝑣𝑎𝑙𝑢𝑒  indicates that the MSBPL is 

adequate for the 5% significance level. The MLE for 𝜃 and 𝛼 are 

respectively  �̂�  = 4.900827 and  �̂�  =0.16719. To examine the 

behavior of this pair of estimators, we have generated 1000 

random samples from the MSBPL distribution by taking  𝜃 =

4. 8  and  𝛼 = 0. 18 . The results are reported in the following 

table: 

 �̂� �̂� 𝑆𝐸(�̂�) 𝑆𝐸(�̂�) 

M

LE 

4.5341 0.2130 0.4704 0.1051 

Ba

yes 

4.8737 0.1766 0.4996 0.1463 

 

VI. SIMULATION STUDY 

Since the performance of the different estimates cannot be 

compared theoretically, an extensive Monte Carlo simulation 

study is conducted to compare the performance of the proposed 

Bayes estimates with the ML estimates in terms of simulated 

risk for different values of the parameter 𝛼 , parameter𝜃 , and 

sample size (n).In this section, we have generated 100000 

different random samples of varying sample sizes 𝑛, 𝜃, 𝛼,   and 

values of  𝑐 = 1 from the MSBPLD. In the Bayes estimation, the 

hyperparameter𝛽 is taken as 0.5. As one data set does not help to 

clarify the performance of an estimate, the simulated risks were 
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computed based on 100000 simulated data sets according to the 

following formulae:  

 𝑆𝑅 = √∑ (𝜃�̂�−𝜃)
2100000

𝑖=1

100000
and𝑆𝑅 = √

∑ (𝛼�̂�−𝛼)
2100000

𝑖=1

100000
 

We have also obtained a coverage probability of the true value 

of the parameters 𝜃  and 𝛼  included in the 95% confidence 

intervals 

(�̂� − 1.96 𝑆𝐸(�̂�), �̂� + 1.96 𝑆𝐸( �̂�)) and 

    (�̂� − 1.96 𝑆𝐸(�̂�), �̂� + 1.96 𝑆𝐸( �̂�)) 

In the case of the above combinations and all, they are found 

to be 1. The simulation results are reported respectively, in 

Tables 2-5. 

Table 2:Simulated risk of ML and Bayes estimates of   and 𝛼 for 

𝛼 = 0.01 with different choices of 𝑛  𝑎𝑛𝑑 𝜃 

 

 

 

Table 3:Simulated risk of ML and Bayes estimates of   and 𝛼 

for 𝛼 = 0.05 with different choices of 𝑛  𝑎𝑛𝑑 𝜃 

 

Table 4:Simulated risk of ML and Bayes estimates of   and 

𝛼 for 𝛼 = 0.1 with different choices of 𝑛  𝑎𝑛𝑑 𝜃 

 

Table 5:Simulated risk of ML and Bayes estimates of   and 

𝛼 for 𝛼 = 0.2 with different choices of 𝑛  𝑎𝑛𝑑 𝜃 

 

 

 

 

 

 

Graphs of Simulated Risk of ML and Bayes estimators for a fixed value 

of 𝜃 with different choices of 𝑛  𝑎𝑛𝑑 𝛼 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 1. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 10  𝑎𝑛𝑑 𝛼 = 0.01 

𝛼 = 0.01 ML Bayes 

𝜃 𝑛 𝑆𝑅(𝜃) 𝑆𝑅(𝛼) 𝑆𝑅(𝜃) 𝑆𝑅(𝛼) 
1 10 0.3226 0.3904 0.9372 0.3737 

1.5 10 0.5964 0.4312 1.3209 0.3785 

2 10 0.6907 0.4611 1.8516 0.3888 

1 20 0.2596 0.3552 0.5882 0.3315 

1.5 20 0.3947 0.3729 0.8082 0.3427 

2 20 0.4942 0.4706 1.6112 0.3612 

1 100 0.1097 0.1627 0.2771 0.1500 

1.5 100 0.1878 0.2359 0.3104 0.1963 

2 100 0.2424 0.2593 0.8186 0.2345 

1 300 0.0504 0.1506 0.1156 0.0936 

1.5 300 0.1106 0.1839 0.1827 0.1147 

2 300 0.1896 0.3010 0.4592 0.1357 

𝛼 = 0.05 ML Bayes 

𝜃 𝑛 𝑆𝑅(𝜃) 𝑆𝑅(𝛼) 𝑆𝑅(𝜃) 𝑆𝑅(𝛼) 
1 10 0.2517 0.3541 0.8928 0.2744 

1.5 10 0.4153 0.3627 1.2425 0.2948 

2 10 0.6690 0.4107 1.7647 0.3345 

1 20 0.2201 0.2859 0.5069 0.2496 

1.5 20 0.3642 0.3055 0.9153 0.2824 

2 20 0.4814 0.3895 1.4721 0.3058 

1 100 0.1031 0.1150 0.1217 0.1202 

1.5 100 0.1516 0.1256 0.3100 0.1224 

2 100 0.1783 0.1921 0.7909 0.1854 

1 300 0.0498 0.1194 0.1122 0.0522 

1.5 300 0.1092 0.1807 0.1698 0.0894 

2 300 0.1712 0.2840 0.4073 0.1310 

𝛼 = 0.1 ML Bayes 

𝜃 𝑛 𝑆𝑅(𝜃) 𝑆𝑅(𝛼) 𝑆𝑅(𝜃) 𝑆𝑅(𝛼) 
1 10 0.2362 0.2967 0.6770 0.2048 

1.5 10 0.3244 0.3223 1.2397 0.2624 

2 10 0.5773 0.3627 1.6991 0.2958 

1 20 0.1083 0.2201 0.4944 0.1976 

1.5 20 0.3164 0.2688 0.8067 0.2377 

2 20 0.4627 0.3392 1.4070 0.2853 

1 100 0.0912 0.1213 0.1183 0.1118 

1.5 100 0.1509 0.1254 0.3061 0.1148 

2 100 0.1691 0.1962 0.7217 0.1917 

1 300 0.0439 0.1166 0.1095 0.0473 

1.5 300 0.1060 0.1797 0.1474 0.0891 

2 300 0.1288 0.2562 0.3926 0.1205 

𝛼 = 0.2 ML Bayes 

𝜃 𝑛 𝑆𝑅(𝜃) 𝑆𝑅(𝛼) 𝑆𝑅(𝜃) 𝑆𝑅(𝛼) 
1 10 0.2300 0.2864 0.5908 0.1416 

1.5 10 0.3037 0.3144 1.2309 0.2104 

2 10 0.4697 0.3478 1.6678 0.2514 

1 20 0.0987 0.1813 0.4759 0.1354 

1.5 20 0.2913 0.2044 0.7810 

 

0.2023 

2 20 0.4048 0.2557 1.3506 0.2492 

1 100 0.0896 0.0814 0.1243 0.0725 

1.5 100 0.1492 0.1646 0.3096 0.1607 

2 100 0.1632 0.1691 

90 

0.5590 0.1862 

1 300 0.0433 0.0733 0.0310 0.0629 

1.5 300 0.0826 0.1785 0.1402 0.0783 

2 300 0.1222 0.1969 0.3883 0.1153 
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Fig. 2. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 20  𝑎𝑛𝑑 𝛼 = 0.01 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 100  𝑎𝑛𝑑 𝛼 = 0.01 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 300  𝑎𝑛𝑑 𝛼 = 0.01 

 

Fig. 5. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 10  𝑎𝑛𝑑 𝛼 = 0.05 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 6. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 20  𝑎𝑛𝑑 𝛼 = 0.05 

 

 

 

 
 

 

Fig. 7. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 100  𝑎𝑛𝑑 𝛼 = 0.05 
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Fig. 8. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 300  𝑎𝑛𝑑 𝛼 = 0.05 

 
 

Fig. 9. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 10  𝑎𝑛𝑑 𝛼 = 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 10. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 20  𝑎𝑛𝑑 𝛼 = 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 100  𝑎𝑛𝑑 𝛼 = 0.1 
 

Fig. 12. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 300  𝑎𝑛𝑑 𝛼 = 0.1 
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Fig. 13. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 10  𝑎𝑛𝑑 𝛼 = 0.2 

Fig. 14. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 20  𝑎𝑛𝑑 𝛼 = 0.2 
 

Fig. 15. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 100  𝑎𝑛𝑑 𝛼 = 0.2 
 

 

 

Fig. 16. Simulated Risk of ML and Bayes estimators for a fixed value of 

𝜃 with different 𝑛 = 300  𝑎𝑛𝑑 𝛼 = 0.2 

 Fig. 17.  Simulated Risk of ML and Bayes estimators for a fixed 

value of 𝛼, with 𝑛 = 10  𝑎𝑛𝑑 𝜃 = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 18.  Simulated Risk of ML and Bayes estimators for a fixed value 

of 𝛼, with 𝑛 = 20  𝑎𝑛𝑑 𝜃 = 1 
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Fig. 19.  Simulated Risk of ML and Bayes estimators for a fixed 

value of 𝛼, with 𝑛 = 100  𝑎𝑛𝑑 𝜃 = 1 

Fig. 20.  Simulated Risk of ML and Bayes estimators for a fixed 

value of 𝛼, with 𝑛 = 300  𝑎𝑛𝑑 𝜃 = 1 

 

 
Fig. 21.  Simulated Risk of ML and Bayes estimators for a fixed 

value of 𝛼, with 𝑛 = 10  𝑎𝑛𝑑 𝜃 = 1.5 

 

 
Fig. 22.  Simulated Risk of ML and Bayes estimators for a fixed 

value of 𝛼, with 𝑛 = 20  𝑎𝑛𝑑 𝜃 = 1.5 

 
Fig. 23.  Simulated Risk of ML and Bayes estimators for a fixed 

value of 𝛼, with 𝑛 = 100  𝑎𝑛𝑑 𝜃 = 1.5 

Fig. 24.  Simulated Risk of ML and Bayes estimators for a fixed 

value of 𝛼, with 𝑛 = 300  𝑎𝑛𝑑 𝜃 = 1.5 

 

 

 

Fig. 25.  Simulated Risk of ML and Bayes estimators for a fixed 

value of 𝛼, with 𝑛 = 10  𝑎𝑛𝑑 𝜃 = 2 

 

Fig. 26.  Simulated Risk of ML and Bayes estimators for a fixed 

value of 𝛼, with 𝑛 = 20  𝑎𝑛𝑑 𝜃 = 2 

 

Fig. 27.  Simulated Risk of ML and Bayes estimators for a fixed 

value of 𝛼, with 𝑛 = 100  𝑎𝑛𝑑 𝜃 = 2 

 

 
 

Fig. 28.  Simulated Risk of ML and Bayes estimators for a fixed 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.05 0.1 0.15 0.2

Si
m

u
la

te
d

 R
is

k

α
ML-SE(θ) ML-SE(α)

BS-SE(θ) BS-SE(α)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2

Si
m

u
la

te
d

 R
is

k

α
ML-SE(θ) ML-SE(α)

BS-SE(θ) BS-SE(α)

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

Si
m

u
la

te
d

 R
is

k

α
ML-SE(θ) ML-SE(α)

BS-SE(θ) BS-SE(α)

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2

Si
m

u
la

te
d

 R
is

k

α
ML-SE(θ) ML-SE(α)

BS-SE(θ) BS-SE(α)

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2

Si
m

u
la

te
d

 R
is

k

α
ML-SE(θ) ML-SE(α)

BS-SE(θ) BS-SE(α)
0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2

Si
m

u
la

te
d

 R
is

k

α
ML-SE(θ) ML-SE(α)

BS-SE(θ) BS-SE(α)

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

Si
m

u
la

te
d

 R
is

k

α
ML-SE(θ) ML-SE(α)

BS-SE(θ) BS-SE(α)



Journal of Scientific Research, Volume 66, Issue 5, 2022 

   130 
Institute of Science, BHU Varanasi, India 

value of 𝛼, with 𝑛 = 300  𝑎𝑛𝑑 𝜃 = 2 

VII. SIMULATION RESULTS 

From the results of the Monte Carlo simulation study 

presented in Tables 2.6 – 2.8 and graphs, the following points 

can be drawn: 

1. For fixed misclassification error(𝛼)as 𝜃  increases the 

simulated risk of ML, and Bayes estimates of 𝜃 

increases. 

2. For fixed misclassification error(𝛼) as 𝜃 increases, the 

simulated risk of ML and Bayes estimates of 𝛼 

increase. 

3. As sample size (𝑛)increases, the simulated risk of ML 

and Bayes estimates of 𝜃 and  𝛼 decreases. 

4. In all cases, the simulated risk of ML estimates of 𝜃 is 

smaller than Bayes estimates of 𝜃. 

5. In all cases, the simulated risk of Bayes estimates of 𝛼 

is smaller than the simulated risk of ML estimates of 𝜃. 

6. For a large sample size (𝑛), ML estimation gives better 

results compared to Bayes estimation in most cases. 

 

CONCLUSION 

A misclassified size-biased Poisson-Lindley distribution 

(MSBPLD) has been proposed, and its nature for varying values 

of parameters has been studied. The ML and Bayes estimates of 

𝜃 and  𝛼are obtained. A real data set has been analyzed for an 

illustrative purpose. The distribution’s applications and goodness 

of fit have been explained through datasets relating to the size 

distribution of freely-forming small groups, and fit has been 

found satisfactory over SBPD and SBPLD. The simulation study 

is carried out to examine and compare the performance of ML 

and Bayes estimates in terms of simulated risk for different 

sample sizes and different values of the parameters 𝛼 and 𝜃. The 

simulation results show that the ML estimates perform better 

than their corresponding Bayes estimates for the large sample 

size. Moreover, the estimated risks of the estimates get smaller 

with the decreasing value of 𝜃. 
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