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Abstract—Lan and Leemis (2008) introduced logistic-
exponential (LE) distribution which has varied applications
in lifetime modellings. In this article, we consider parametric
bootstrap control charts (BCCs) for detecting a shift in the
percentile of LE distribution in a process monitoring situation.
Four parametric BCCs based on maximum likelihood method,
method of least squares, method of Cramèr-von-Mises and
method of maximum product of spacings are used for monitoring
percentiles of LE distribution. We perform simulations to see the
performances of the proposed four BCCs with respect to average
run length. Finally, one data set is analyzed to illustrate our
results.

Index Terms—Average run length; bootstrap control chart;
classical methods of estimation; logistic-exponential distribution;
logistic-exponential percentile.

I. INTRODUCTION

One of the important tools of statistical process control
(SPC) is the control chart which is primarily used for
monitoring and improvement of the production process. The
purpose of process monitoring techniques is to detect an
unusual cause or causes to reduce the number of defective
items so as to maximize the profit [see, Montgomery (2009)].
Control charts are now extensively used, not only in industry,
but also in many other fields with real exertions, such as
health care, packing industry, environmental sciences etc to
monitor a process. A common practice to monitor control
charts is that the process data come from some known
probability distribution (either normal or non-normal). The
usual Shewhart X bar and R control chart assume that
the observed process data come from normal distribution.
However, when the sampling distribution of an estimator of
the parameter is not available theoretically, bootstrap methods
(both parametric and non-parametric) are helpful to obtain
the limits of control chart. Further, when the underlying
distribution is skewed, bootstrap chart has an advantage over

Shewhart-type chart because it can alarm for an out-of-control
status faster than the later type chart [see, Liu and Tang
(1996) and Jones and Woodall (1998) for details]. Recently,
several authors have developed parametric bootstrap control
chart (BCC) to monitor percentiles for different distributions
based on different methods of estimation. In this regard,
readers may refer to the works of Nichols and Padgett (2005),
Lio and Park (2008, 2010), Lio et al. (2014), Rezac et al.
(2015), Chaing et al. (2017) and many others.

In this article, parametric BCCs for the LE percentiles are
obtained employing the techniques of MLE , LSE , CME
and MPSE which are defined as MLEB , LSEB , CMEB
andMPSEB , respectively. The remaining article is presented
as follows: A brief introduction of the LE distribution is
presented in Section 2. The LE percentiles estimates based
on MLE , LSE , CME and MPSE are obtained in Section
3. In Section 4, parametric BCCs ofMLEB , LSEB , CMEB ,
MPSEB for LE percentiles are derived. In Section 5, the
behaviour and performances of the proposed parametric BCCs
for LE percentiles are evaluated by using Monte Carlo simu-
lations. One example based on failure data of Alloy T7987
is provided for illustration purposes in Section 6. Finally,
conclusion is made in Section 7.

II. LOGISTIC-EXPONENTIAL DISTRIBUTION

Logistic-exponential (LE) distribution was introduced in
the statistical literature by Lan and Leemis (2008). Lan and
Leemis (2008) pointed out that LE distribution can accomo-
dates constant, increasing, decreasing, bathtub and uni-modal
failure rate shapes and since all products or items’ hazard rate
function exhibits at least one of the aforementioned character-
istics of the hazard functions, it is useful in reliability analysis,
product and process control etc. Although, it has flexible
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hazard rate shapes, very little attention has been given to
different branches of statistics, like statistical quality control,
reliability, survival analysis etc. The survival function of the
LE distribution resembles the log-logistic survival function
with its base changed to an exponential function, which is why
it is called “LE”. The moments are finite, although they cannot
be expressed in closed form. Applications of this distribution
in variety of fields can be seen in Chatterjee and Singh (2014),
van Staden and King (2016), Mahto et al. (2019) and Ali et
al. (2020). The probability density and cumulative distribution
functions of the LE distribution are

g(t; Θ) =
λ.κ

(
eλt − 1

)(κ−1)
eλt{

1 + (eλt − 1)
κ}2 ; t > 0, κ, λ > 0,(1)

G(t; Θ) =

(
eλt − 1

)κ
1 + (eλt − 1)

κ ; t > 0, κ, λ > 0, (2)

where, Θ = (κ, λ). The 100pth percentile of the LE distri-
bution and its is given by the Equations (1) and (2) can be
represented as

Q(p; Θ) =
1

λ
log

{
+

(
p

1− p

) 1
κ

}
; 0 < p < 1. (3)

where κ and λ are the shape and scale parameters, respectively.
For κ > 1, the hazard rates of the distribution is unimodal
shaped, for κ = 1, the hazard rate of the distribution is constant
and for κ < 1, the hazard rates of the distribution is bathtub-
shaped, respectively.

III. ESTIMATION OF LE PERCENTILE

This section deals with the estimation of four traditional
methods, namely method of MLE , method of LSE , method
of CME and method of MPSE to estimate Q(p; Θ) for the
LE distribution.

MLE

Let T = (T1, T2 · · ·Tn) be a random sample of size n
drawn from two parameter LE distribution, given in Equation
(1). Thus the likelihood function can be written as follows:

L(Θ) =

n∏
i=1

g(ti; Θ)

=

n∏
i=1

λ.κ
(
eλti − 1

)(κ−1)
eλti{

1 + (eλti − 1)
κ}2 . (4)

Then, the log-likelihood function can be written as

logL(Θ) = n ln(λ) + n ln(κ) + (κ− 1)

n∑
i=1

ln
(
eλti − 1

)
+

λ

n∑
i=1

ti − 2

n∑
i=1

ln
{

1 + 1 +
(
eλti − 1

)k}
. (5)

The MLEs of κ and λ, say κ̂mle and λ̂mle, respectively
can be obtained as an iterative solutions of the following two
equations:

∂ logL(Θ)

∂κ
=

n

κ
+

n∑
i=1

ln
(
e
λti − 1

)

−2
n∑
i=1

(
eλti − 1

)k
ln
(
eλti − 1

)
1 +

(
eλti − 1

)κ , (6)

∂ logL(Θ)

∂λ
=

n

λ
+

n∑
i=1

(κ− 1)ti.e
λti

eλti − 1
+

n∑
i=1

ti

−2
n∑
i=1

κ
(
eλti − 1

)k−1
ti.e

λxi

1 +
(
eλti − 1

)κ . (7)

To obtain the MLEs, an optimization technique can be
employed to obtain the solutions of the Equations (6) and
(7). Here, non-linear minimization (NLM) [see, Dennis and
Schnabel (1983)] method is used to obtain the estimates of
the parameters of the LE distribution. For NLM method, we
have to iterate the negative log-likelihood function using some
starting guess value for the parameters, say, moment estimates
of κ and λ, and get the estimates of κ and λ as κ̂mle and
λ̂mle, respectively. Replacing Θ with Θ̂mle in Equation (3),
the MLE of Q(p; Θ) can be obtained as

Q̂(p; Θ̂)mle =
1

λ̂mle
log

{
+

(
p

1− p

) 1
κ̂mle

}
for 0 < p < 1. (8)

LSE
Suppose t(1:n) < t(2:n) < · · · < t(n:n) of size n be

the ordered random variables from a distribution function
F (t(i:n); Θ). Therefore, LSEs of κ and λ, say κ̂lse and λ̂lse
can be obtained by minimizing the following function

L(κ, λ) =

n∑
i=1

[
G(t(i:n); Θ)− i

n+ 1

]2

with respect to κ and λ. Equivalently, they can be obtained by
solving the following equations

n∑
i=1

[
G(t(i:n); Θ)− i

n+ 1

]
κ1

(
t(i:n); Θ

)
= 0,

n∑
i=1

[
G(t(i:n); Θ)− i

n+ 1

]
κ2

(
t(i:n); Θ

)
= 0,

where

κ1

(
t(i:n); Θ

)
=

∂G(t(i:n); Θ)

∂κ

=

(
eλti − 1

)κ
log(eλti − 1)[

1 +
(
eλti − 1

)κ]2 , (9)

and

κ2

(
t(i:n); Θ

)
=

∂G(t(i:n); Θ)

∂λ

=
κ ti e

λti

(
eλti − 1

)k−1

[
1 +

(
eλti − 1

)k]2 (10)

respectively. Substituting the LSEs in Eqn. (3), we can get
the estimator as
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Q̂(p; Θ̂)lse =
1

λ̂lse
log

{
+

(
p

1− p

) 1
κ̂lse

}
for 0 < p < 1. (11)

CME
By minimizing the following function, we can get the

Cramér-von-Mises estimates of the unknown parameters κ and
λ, say κ̂cme and λ̂cme

C (Θ) =
1

12n
+

n∑
i=1

[
G(t(i:n); Θ)− 2i− 1

2n

]2

These estimators can also be obtained from the following non-
linear equations:

n∑
i=1

[
G(t(i:n); Θ)− 2i− 1

2n

]
κ1

(
t(i:n); Θ

)
= 0,

n∑
i=1

[
G(t(i:n); Θ)− 2i− 1

2n

]
κ2

(
t(i:n); Θ

)
= 0,

where κ1 (·; Θ) and κ2 (·; Θ) are defined in Eqns. (9) and (10),
respectively. Substituting the CMEs in Eqn. (3), we can get
the estimator as

Q̂(p; Θ̂)cme =
1

λ̂cme
log

{
+

(
p

1− p

) 1
κ̂cme

}
for 0 < p < 1. (12)

MPSE
The MPS mathod was developed by Cheng and Amin

(1983) and showed that this method is as competent as the
MLEs. Based on a random sample of size n from the LE
distribution, the uniform spacings can be defined as follows

Di(Θ) = G(t(i:n); Θ)−G(t(i−1:n); Θ), i = 1, 2, . . . , n+ 1,

The following function is maximized to obtain the MPSEs
of κ and λ

G (Θ) =

[
n+1∏
i=1

Di(Θ)

] 1
n+1

,

or, equivalently maximizing the following function

H (Θ) =
1

n+ 1

n+1∑
i=1

logDi(Θ).

MPSEs denoted as κ̂mpse and λ̂mpse can be obtained by
solving the following nonlinear equations

∂

∂κ
H (Θ) =

1

n+ 1

n+1∑
i=1

1

Di(Θ)

[
κ1

(
t(i:n); Θ

)
− κ1

(
t(i−1:n); Θ

)]
= 0,

∂

∂λ
H (Θ) =

1

n+ 1

n+1∑
i=1

1

Di(Θ)

[
κ2

(
t(i:n); Θ

)
− κ2

(
t(i−1:n); Θ

)]
= 0.

where κ1 (·; Θ) and κ2 (·; Θ) are defined in Eqns. (9) and
(10), respectively. Substituting the MPSEs in Eqn. (3), we
can get the estimator as

Q̂(p; Θ̂)mpse =
1

λ̂mpse
log

{
+

(
p

1− p

) 1
κ̂mpse

}
for 0 < p < 1.(13)

IV. PARAMETRIC BOOTSTRAP CONTROL CHARTS

In this section, we develop parametric bootstrap control
chart for the LE percentiles as of the sampling distribution
of statistic for the LE percentile is not in hand. To develop
BCC for the LE percentiles, below the algorithm is provided
based on MLEs of Θ = (κ, λ).

1) If the process is stationary and under control, take
K stochastic samples of each of size nj (j =
1, 2, · · · , K) randomly taken from an LE distribution
for unknown parameters κ and λ. We identify the mea-
surements of the j th value by xij (i = 1, 2, · · · , nj).

2) Using the MLEs given in Equations (3.6) and (3.7),
evaluate the MLEs of Θ̂ = (κ̂, λ̂) with the combined

observations of size n =
K∑
J=1

nj .

3) Create a bootstrap values of size m, x∗1, x
∗
2, · · · , x∗M

from the LE using the MLEs obtained in Step 2.
Here, M is the sample size which can be obtained for
forthcoming subgroup values.

4) Using bootstrap sample obtained in Step 3 and obtain
the MLEs, κ̂∗mle and λ̂∗mle.

5) For bootstrap subgroup sample obtained in Step 3 and
Θ̂∗mle = (κ̂∗, λ̂∗) in Step 4, find the bootstrap esti-
mate, Q̂∗(p; Θ̂∗mle) of the 100pth percentile Q̂(p; Θ̂)mle,
where

Q̂
∗
(p; Θ̂)

∗
mle =

1

λ̂∗mle
log[1 + (

p

1− p
)

1
κ̂∗
mle ] for 0 < p < 1.

6) Repeat Steps 3-5, quite a large number of times say, B,
to obtain B bootstrap estimates of Q̂(p; Θ̂)mle, denoted
as
{
Q̂∗(J )(p; Θ̂)∗mle; J = 1, 2, · · · , B

}
.

7) Using the B bootstrap estimates obtained in Step 6, next
obtain the 100(ζ/2)th and 100(1 − ζ/2)th percentiles.
Here, ζ is the probability that a value which is regarded
as out of control when the process is assumed as in
control, i.e., false alarm rate (FAR). Thus 100(ζ/2)th
and 100(1 − ζ/2)th percentiles are the lower control
limit LCL and the upper control limit UCL towards the
(BCC) of FAR = ζ, respectively. It is understood that
various interpretations of the observed percentiles have
been proposed in the statistics literature. Let,

¯̂
Q∗(p; Θ̂)∗mle =

1

B

B∑
J
Q̂∗(J )(p; Θ̂)∗mle

and Q̂∗(τ)(p; Θ̂)∗mle be the τ percentile of{
Q̂∗(J )(p; Θ̂)∗mle; J = 1, 2, · · · , B

}
, i.e.,

Q̂∗(τ)(p; Θ̂)∗mle is such that

1

B

B∑
J=1

In
(
Q̂
∗(J )

(p; Θ̂)
∗
mle ≤ Q̂

∗(τ)
(p; Θ̂)

∗
mle

)
= τ ; 0 < τ < 1,

where In(.) is the indicator function. Hence, UCL,
control limit (CL), LCL are as follows:

UCL = Q̂∗(B×100(1−ζ/2))(p; Θ̂)∗mle

CL =
¯̂
Q∗(p; Θ̂)∗mle

LCL = Q̂∗(B×100(ζ/2))(p; Θ̂)∗mle
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Now, if the method of ML is replaced by the method
of LS , method of CM and method of MPS for the
steps 1-3, then we get the bootstrap estimates (κ̂∗lse, λ̂

∗
lse),

(κ̂∗cme, λ̂
∗
cme), (κ̂∗mpse, λ̂

∗
mpse), respectively. Hence, the plot

statistics forMLE , LSE , CME andMPSE are Q̂∗(p; Θ̂)∗mle,
Q̂∗(p; Θ̂)∗lse, Q̂

∗(p; Θ̂)∗cme and Q̂∗(p; Θ̂)∗mpse respectively. Af-
ter the completion of construction of LCL and UCL of a
control chart in Phase I, the monitoring process continues
in Phase II with the drawing of future samples each of size
M from LE distribution and calculation of plot statistic,
respectively. In case the plot statistic is between LCL and
UCL, the process is said to be in control, otherwise the control
chart indicates for out-of-control.

V. SIMULATION AND DISCUSSION

In this section, Monte Carlo simulation study is conducted
to check the performance of the LE percentile BCCs (MLE ,
LSE , CME , MPSE) using R package, an open-source
developed by Ihaka and Gentleman (1996). Now, the
under control nominal average length (ARL) is defined
by ARLH0

= 1/γ for every committed false alarm rate
(FAR) γ. The performances of the LE percentile control
charts are examined based on simulated in-control ARLH0

and simulated out-of-control average run length ARLH1

and their corresponding standard errors of run lengths
(SERLs) respectively. Also, the behaviour of the BCCs for
LE percentiles are assessed by obtaining the average LCL
and UCL and their associated standard errors (SEs) from
simulations.

For the present investigation, the LE distribution with
κ = 4.31359 and λ = 0.38756, which is connected with
the real life application is considered in next section. The
simulation study is carried out with subgroup size M = 5,
subgroup number K = 20, and different levels of FARs
γ0 = 0.01, 0.05, 0.0027. The given γ’s are known as Type-I
errors for real life applications in quality control. The
chart constants of bootstrap charts are computed by using
B = 5, 000 bootstrap observations. For each simulation
run, the ARL, this can be determined as the number of
subgroup needed to the first out-of-control observed, and
corresponding SERLs are obtained. The average LCL,
UCL and corresponding SEs are also obtained based on
5, 000 bootstrap samples. Due to page constraint, displayed
some portion of results for the M = 5, K = 20 and
p = 0.01, 0.05, 0.10) are given in Tables 1-4 for MLE ,
LSE , CME and MPSE . Most of the truncated life tests
are designed based on the mean lifetime. On the other
hand, in numerous applications in industry, the small
percentile of lifetime is needed to convene engineering
intend purpose. Lio et al. (2010) suggested that the mean is
not a good index to grab the change on the quality of the
manufactured goods lifetime. For instance, products would
be accepted due to a little decrease in the mean lifetime after
inspection. However the smaller lifetime percentile would be
significantly below the consumers anticipation. Tables 1-4
show the simulated ARLH0

and the corresponding SERLs

for the MLEB , LSEB , CMEB and MPSEB , respectively.
For γ0 = 0.01, 0.05, 0.0027, all the MLEB , LSEB , CMEB
and MPSEB are competitive irrespective of the sample size
and P values, excluding at CMEB has the simulated ARLH0

smaller as compared to γ0 = 0.10, 0.05. For γ0 = 0.0027,
CMEB has the simulated ARLH0 greater than their counter
part γ0 = 0.0027. The associated SERLs in Tables 1-4
notice that the simulated 5, 000 run lengths are coherent for
all control chart. Comprehensively, theMLEB andMPSEB
out perform the other bootstrap charts.

The average UCL and LCL and the associated SEs are
determined as specified below: for every set of K individual
observations of size n (K = 20 observations of the same
size were used from the simulations) computed from a LE
distribution with a given shape and scale parameters κ and λ,
as explained in Step 1, Steps 2 − 7 were then accomplished
with B = 5, 000 to bring forth control limits. The total
procedure (Steps 1−7) was recapitulated 5, 000 times and the
average LCLs and UCLs were determined based on 5, 000
recapitulated values of LCLs and UCLs, respectively. The
adhering SEs of the control limits were also determined from
the corresponding 5, 000 values. A few simulation results
of the average LCL and UCL with the agreeing SEs are
provided at Tables 1-4 with sample size 5 forMLEB , LSEB ,
CMEB and MPSEB of percentile estimates. From Tables
1-4 noticed that the standard deviations are modest relative
to the representing control limits. It has been also observed
that the simulated coefficient of variations (CVs) are less than
0.0084 for all the control limits ofMLEB , tinier than 0.0087
for all the control limits of MPSEB , tinier than 0.0097
for all the control limits of LSEB and tinier than 0.0127
for all the control limits of CMEB . Hence, the proposed
constructing procedure for MLEB and MPSEB can render
stable control limits and furnish helpful advising to develop
control chart in the real scenario. SinceMLEB andMPSEB
shows improve performance based on simulated ARLH0 than
the other studied control charts,MLEB andMPSEB will be
considered for further interrogation to examine the ARLH1

for out of control process. Control limits of MLEB , LSEB ,
CMEB and MPSEB are developed with phase I samples.
Hence, next observations are produced from beyond control
process. The beyond control observations are then applied
to calculate ARLH1 and the representing SERL. One can
implemented beyond control mechanism in the below manner:
Assume λ0 of the in control process be constant, also κ
decrease from κ0 to for the under control process to a tinier
value κ1 for the beyond control process and can observed that
which one is more sensitive to supervise a descending shift of
the LE percentiles. Actually, this situation is also discussed in
the next section with the help of a numerical example.

VI. APPLICATION

Here, we consider an example comprises to 67 specimens
of Alloy T7987 that failed before having accumulated 300
thousand cycles of testing and was initially considered
by Raqab et al. (2017). The dataset is fitted with the LE
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distribution and the MLEs for the parameters κ and λ are
4.31 and 0.39 respectively for which the p value of one
sample Kolmogorav-Smirnov (KS) statistic is 0.5814. We
generated K = 20 under control Phase-I observations each
of size M = 5 form LE distribution with κ0 = 4.31 and
λ0 = 0.39. All the 20 samples of size 5 are given in Table 6.

Let the industrial quality officers are considered with the
lifetime quality of cycles of testing of the tenth percentile,
Q(p = 0.10; Θ0 = (κ0 = 4.31, λ0 = 0.39)) = 1.21 and the
process is considered as beyond control state in Phase II with a
shift of the parameters κ0 to κ1 = 3.51 when λ0 = 0.39. Table
7 displays 20 out of control Phase II samples. The MLEB
chart was demonstrated using Table V I with γ = 0.0027 and
B = 5, 000. The bootstrap chart control limits based onMLEs
are obtained by

UCL = 2.452

CL = 1.324

LCL = 0.871

From Figure 1, it is observed that the MLEB gives asym-
metric control limits the CL and display statistic of sample
percentiles at p = 0.10 at sample 7 is close to LCL, but
it did not show out of control. It is signal out first at the
sample point 52. As a matter of fact that except sample 52,
all the sample statistics plotted in Figure 1 are lie between
the lower and upper control limits. The proposed parametric
BCCs appears as pretty powerful and can be well carried out
for the case where one necessarily to follow LE distribution
for the probability of process measurements. To heighten the
defensiveness of the MLEB to alarm an out-of-control, we
suggested to look at employ 25 Phase I observations entirely
for size 6 or apply 20 Phase I observations entirely for size 8
to develop the MLEB .
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Fig. 1. MLEB control chart for the Phase-II data set when γ = 0.0027.

VII. CONCLUSIONS

The parametric BCCs based on the different classical meth-
ods of estimation, viz., MLE , LSE , CME and MPSE ,
respectively are developed to supervise the percentiles of the
LE distribution. The sampling distribution of the statistic for
the LE percentile is not available. Thus, the conventional
Shewhart control chart SCC for the LE distribution is not
tractable. Therefore, in this article, we propose to use BCC
in order to deal with the issues described. Using extensive
Monte Carlo simulations, we established that the ARL for
MLEB chart provide good results for LE percentiles by
the developed parametric bootstrap approach. The sampling
distribution of the predicted statistic for the LE percentile
is generally asymmetric and is not suitable for small sample
numbers, hence the parametric BCC should be used instead.
Therefore, it is advised to monitor the LE percentiles in
practise using theMLEB . We can take into account additional
observations in each sample for Phase I to produce the control
chart, which will enhance the MLEB’s capacity to warn a
signal that is outside of the acceptable range. In further study,
the suggested approach can be expanded to a variety of lifetime
distributions.
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TABLE I
IN-CONTROL ARL ESTIMATE, CORRESPONDING SERL, AVERAGE LCL,

UCL AND CORRESPONDING SES FORMLEB CHART FOR
γ0 = 0.10, 0.01, 0.0027 FARS.

K = 20, M = 5 κ = 4.31359 λ = 0.38756
Percentile ARL SERL LCL SE UCL SE

γ0=0.10 (FAR) ARLH0 = 10
p = 0.01 10.0036 0.1328 0.5871 0.0322 2.8973 0.0521
p = 0.05 10.0753 0.1377 0.6122 0.0345 2.9122 0.0537
p = 0.10 10.1128 0.1397 0.6348 0.0382 2.9366 0.0543
p = 0.25 10.2652 0.1425 0.6893 0.0395 2.9762 0.0577

γ0=0.01 (FAR) ARLH0 = 100
p = 0.01 103.3211 1.6892 0.5346 0.0311 3.1211 0.0657
p = 0.05 108.7862 1.8123 0.5732 0.0327 3.2342 0.0662
p = 0.10 113.2237 1.9789 0.5984 0.0334 3.4126 0.0671
p = 0.25 119.3872 2.1136 0.6233 0.0346 3.4653 0.0683

γ0=0.0027 (FAR) ARLH0
= 370.37

p = 0.01 416.2244 1.9768 0.4763 0.0304 3.2214 0.0677
p = 0.05 419.2981 1.9989 0.4983 0.0309 3.2563 0.0689
p = 0.10 423.7769 2.1327 0.5322 0.0314 3.4987 0.0694
p = 0.25 434.1174 2.2249 0.5553 0.0321 3.5436 0.0711

TABLE II
IN-CONTROL ARL ESTIMATE, CORRESPONDING SERL, AVERAGE LCL,

UCL AND CORRESPONDING SES FOR LSEB CHART FOR
γ0 = 0.10, 0.01, 0.0027 FARS.

K = 20, M = 5 κ = 4.31359 λ = 0.38756
Percentile ARL SERL LCL SE UCL SE

γ0=0.10 (FAR) ARLH0
= 10

p = 0.01 10.0006 0.1287 0.5237 0.0313 2.9347 0.0566
p = 0.05 10.0022 0.1321 0.5732 0.0319 2.9983 0.0573
p = 0.10 10.0759 0.1389 0.6089 0.0327 3.0729 0.0589
p = 0.25 10.1127 0.1422 0.6322 0.0335 3.1123 0.0613

γ0=0.01 (FAR) ARLH0
= 100

p = 0.01 100.0764 1.3233 0.5113 0.0296 3.1749 0.0699
p = 0.05 100.8832 1.6679 0.5423 0.0311 3.2238 0.0714
p = 0.10 103.0914 1.9348 0.5783 0.0321 3.2981 0.0722
p = 0.25 106.1127 2.0237 0.6127 0.0330 3.3318 0.0732

γ0=0.0027 (FAR) ARLH0 = 370.37
p = 0.01 407.3754 1.5237 0.4234 0.0293 3.3321 0.0724
p = 0.05 410.7764 1.7866 0.4673 0.0308 3.4612 0.0733
p = 0.10 414.2217 2.0978 0.4982 0.0317 3.5211 0.0747
p = 0.25 419.8876 2.6893 0.5359 0.0327 3.5982 0.0766
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TABLE III
IN-CONTROL ARL ESTIMATE, CORRESPONDING SERL, AVERAGE LCL,

UCL AND CORRESPONDING SES FOR CMEB CHART FOR
γ0 = 0.10, 0.01, 0.0027 FARS.

K = 20, M = 5 κ = 4.31359 λ = 0.38756
Percentile ARL SERL LCL SE UCL SE

γ0=0.10 (FAR) ARLH0
= 10

p = 0.01 9.1356 0.1223 0.5188 0.0309 2.9961 0.0611
p = 0.05 9.5022 0.1311 0.5632 0.0321 3.1427 0.0626
p = 0.10 10.0049 0.1359 0.5976 0.0332 3.2671 0.0637
p = 0.25 10.1211 0.1453 0.6322 0.0347 3.3246 0.0645

γ0=0.01 (FAR) ARLH0 = 100
p = 0.01 99.2316 1.3444 0.4998 0.0288 3.1929 0.0717
p = 0.05 99.8752 1.5632 0.5327 0.0307 3.2893 0.0732
p = 0.10 102.0722 1.8746 0.5876 0.0321 3.3879 0.0743
p = 0.25 104.2465 1.8978 0.6457 0.0334 3.4562 0.0766

γ0=0.0027 (FAR) ARLH0 = 370.37
p = 0.01 404.2465 1.4356 0.4089 0.0288 3.4327 0.0755
p = 0.05 406.3576 1.6782 0.4239 0.0297 3.5489 0.0769
p = 0.10 408.4982 1.8978 0.4892 0.0312 3.6123 0.0786
p = 0.25 411.7679 2.0861 0.5348 0.0326 3.6987 0.0798

TABLE IV
IN-CONTROL ARL ESTIMATE, CORRESPONDING SERL, AVERAGE LCL,

UCL AND CORRESPONDING SES FORMPSEB CHART FOR
γ0 = 0.10, 0.01, 0.0027 FARS.

K = 20, M = 5 κ = 4.31359 λ = 0.38756
Percentile ARL SERL LCL SE UCL SE

γ0=0.10 (FAR) ARLH0
= 10

p = 0.01 10.0043 0.1344 0.5632 0.0317 2.9027 0.0524
p = 0.05 10.0766 0.1389 0.5832 0.0321 2.9237 0.0528
p = 0.10 10.1138 0.1407 0.6123 0.0327 2.9567 0.0533
p = 0.25 10.2657 0.1436 0.6245 0.0333 2.9946 0.0538

γ0=0.01 (FAR) ARLH0 = 100
p = 0.01 103.3216 1.6911 0.5233 0.0303 3.1428 0.0681
p = 0.05 108.7874 1.8184 0.5517 0.0309 3.1783 0.0694
p = 0.10 113.2248 1.9832 0.5843 0.0314 3.2239 0.0699
p = 0.25 119.3891 2.1177 0.5987 0.0321 3.2763 0.0712

γ0=0.0027 (FAR) ARLH0 = 370.37
p = 0.01 416.4572 1.9981 0.4544 0.0301 3.2967 0.0711
p = 0.05 419.3237 1.9992 0.4862 0.0309 3.3256 0.0718
p = 0.10 423.8793 2.1357 0.5127 0.0317 3.3891 0.0726
p = 0.25 434.1321 2.2281 0.5438 0.0324 3.4312 0.0733

TABLE V
TOP 20 SUBGROUPS GENERATED FROM LE DISTRIBUTION WITH

κ0 = 4.31, λ0 = 0.39.

Subgroup Generated data set Subgroup Generated data set
number number

1 2.14 2.26 1.97 1.57 1.43 11 1.93 1.96 2.13 1.99 1.61
2 1.46 2.50 2.62 0.77 1.50 12 1.49 3.41 1.82 1.49 1.93
3 1.96 2.39 2.21 2.16 2.15 13 0.90 1.88 2.03 1.43 1.28
4 2.14 2.32 2.58 2.58 1.66 14 2.30 2.21 1.84 1.83 1.66
5 1.94 2.52 2.30 2.18 2.10 15 1.32 1.89 1.52 1.50 1.29
6 1.20 2.01 1.62 2.15 1.66 16 1.43 2.79 2.15 2.26 1.91
7 2.95 2.05 2.22 1.47 2.49 17 2.71 2.07 0.97 2.64 1.55
8 1.81 2.69 2.12 1.36 0.82 18 2.65 1.73 1.82 1.84 1.07
9 1.60 1.35 2.02 1.81 1.73 19 2.69 1.28 1.85 1.85 1.59

10 1.96 1.68 1.06 1.33 1.61 20 1.75 1.35 2.83 1.63 1.41

TABLE VI
FORTY OUT-OF-CONTROL SUBGROUPS GENERATED FROM LE

DISTRIBUTION WITH κ1 = 3.51, λ0 = 0.39.

Subgroup Generated data set Subgroup Generated data set
number number

21 1.52 1.94 1.21 1.73 2.30 41 2.10 1.51 1.69 1.24 2.40
22 1.53 0.79 1.31 1.40 1.39 42 1.89 0.72 2.01 1.84 2.09
23 2.07 1.22 2.48 1.41 1.29 43 1.02 2.37 1.42 1.37 2.22
24 4.26 1.51 1.43 1.85 1.81 44 1.68 2.30 1.71 3.05 1.51
25 1.31 1.61 1.12 2.00 1.17 45 2.04 1.25 1.39 2.77 1.84
26 2.10 2.92 1.17 1.36 2.00 46 1.55 2.70 1.08 1.81 1.09
27 1.65 0.53 2.53 0.99 2.47 47 1.12 2.44 2.68 1.40 1.46
28 1.62 1.09 1.50 2.07 1.87 48 1.87 1.74 1.71 1.40 3.09
29 1.47 2.97 1.69 2.50 1.94 49 1.79 1.62 0.93 1.85 1.68
30 2.89 2.83 2.39 1.73 2.38 50 1.85 1.77 1.59 2.48 1.86
31 2.19 2.29 2.87 2.70 2.54 51 2.32 1.50 1.20 1.61 1.69
32 0.99 1.19 0.94 1.68 2.36 52 0.20 1.69 1.50 1.58 2.67
33 1.35 2.14 2.95 1.30 2.04 53 2.38 1.25 2.16 1.61 1.66
34 1.43 1.47 1.90 1.06 1.92 54 2.11 1.23 1.26 2.27 2.41
35 1.46 1.70 1.22 1.82 1.95 55 2.10 1.03 2.33 1.76 1.43
36 1.48 1.18 1.60 1.29 0.83 56 1.62 1.27 1.57 1.37 2.30
37 1.47 1.96 2.19 2.12 1.66 57 1.49 0.99 1.21 2.03 2.21
38 1.39 3.04 2.20 1.78 1.85 58 3.03 1.96 0.83 1.99 1.88
39 1.49 2.55 1.98 1.80 1.97 59 2.64 1.25 0.41 2.31 2.02
40 1.74 1.21 1.91 1.91 3.40 60 1.03 1.68 3.03 1.36 1.20
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