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Abstract—Lan and Leemis (2008) introduced logistic-
exponential (L) distribution which has varied applications
in lifetime modellings. In this article, we consider parametric
bootstrap control charts (BCCs) for detecting a shift in the
percentile of £E distribution in a process monitoring situation.
Four parametric 5CCs based on maximum likelihood method,
method of least squares, method of Cramer-von-Mises and
method of maximum product of spacings are used for monitoring
percentiles of LE distribution. We perform simulations to see the
performances of the proposed four 5CCs with respect to average
run length. Finally, one data set is analyzed to illustrate our
results.

Index Terms—Average run length; bootstrap control chart;
classical methods of estimation; logistic-exponential distribution;
logistic-exponential percentile.

I. INTRODUCTION

One of the important tools of statistical process control
(SPC) is the control chart which is primarily used for
monitoring and improvement of the production process. The
purpose of process monitoring techniques is to detect an
unusual cause or causes to reduce the number of defective
items so as to maximize the profit [see, Montgomery (2009)].
Control charts are now extensively used, not only in industry,
but also in many other fields with real exertions, such as
health care, packing industry, environmental sciences etc to
monitor a process. A common practice to monitor control
charts is that the process data come from some known
probability distribution (either normal or non-normal). The
usual Shewhart X bar and R control chart assume that
the observed process data come from normal distribution.
However, when the sampling distribution of an estimator of
the parameter is not available theoretically, bootstrap methods
(both parametric and non-parametric) are helpful to obtain
the limits of control chart. Further, when the underlying
distribution is skewed, bootstrap chart has an advantage over
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Shewhart-type chart because it can alarm for an out-of-control
status faster than the later type chart [see, Liu and Tang
(1996) and Jones and Woodall (1998) for details]. Recently,
several authors have developed parametric bootstrap control
chart (BCC) to monitor percentiles for different distributions
based on different methods of estimation. In this regard,
readers may refer to the works of Nichols and Padgett (2005),
Lio and Park (2008, 2010), Lio et al. (2014), Rezac et al.
(2015), Chaing et al. (2017) and many others.

In this article, parametric BCCs for the L& percentiles are
obtained employing the techniques of MLE, LSE, CME
and MPSE which are defined as MLEg, LSER, CMEp
and MPSE g, respectively. The remaining article is presented
as follows: A brief introduction of the L& distribution is
presented in Section 2. The L& percentiles estimates based
on MLE, LSE, CME and MPSE are obtained in Section
3. In Section 4, parametric BCCs of MLE g, LSE B, CMEp,
MPSEp for LE percentiles are derived. In Section 5, the
behaviour and performances of the proposed parametric BCCs
for LE percentiles are evaluated by using Monte Carlo simu-
lations. One example based on failure data of Alloy 77987
is provided for illustration purposes in Section 6. Finally,
conclusion is made in Section 7.

II. LOGISTIC-EXPONENTIAL DISTRIBUTION

Logistic-exponential (L&) distribution was introduced in
the statistical literature by Lan and Leemis (2008). Lan and
Leemis (2008) pointed out that £E distribution can accomo-
dates constant, increasing, decreasing, bathtub and uni-modal
failure rate shapes and since all products or items’ hazard rate
function exhibits at least one of the aforementioned character-
istics of the hazard functions, it is useful in reliability analysis,
product and process control etc. Although, it has flexible



hazard rate shapes, very little attention has been given to
different branches of statistics, like statistical quality control,
reliability, survival analysis etc. The survival function of the
LE distribution resembles the log-logistic survival function
with its base changed to an exponential function, which is why
it is called “££”. The moments are finite, although they cannot
be expressed in closed form. Applications of this distribution
in variety of fields can be seen in Chatterjee and Singh (2014),
van Staden and King (2016), Mahto et al. (2019) and Ali et
al. (2020). The probability density and cumulative distribution
functions of the L& distribution are
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where, © = (k,A). The 100pth percentile of the £E distri-
bution and its is given by the Equations (1) and (2) can be

represented as
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where x and )\ are the shape and scale parameters, respectively.
For k > 1, the hazard rates of the distribution is unimodal
shaped, for x = 1, the hazard rate of the distribution is constant
and for k < 1, the hazard rates of the distribution is bathtub-
shaped, respectively.

Q(p;O) =

III. ESTIMATION OF LE PERCENTILE

This section deals with the estimation of four traditional
methods, namely method of MLE, method of LSE, method
of CME and method of MPSE to estimate Q(p; ©) for the
LE distribution.

MLE

Let T = (Ty,Tz---T,) be a random sample of size n
drawn from two parameter L& distribution, given in Equation
(1). Thus the likelihood function can be written as follows:
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The MLEs of x and A, say Ry, and /\mle, respectively
can be obtained as an iterative solutions of the following two
equations:
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To obtain the MLEs, an optimization technique can be
employed to obtain the solutions of the Equations (6) and
(7). Here, non-linear minimization (N'/£M) [see, Dennis and
Schnabel (1983)] method is used to obtain the estimates of
the parameters of the L& distribution. For A’£M method, we
have to iterate the negative log-likelihood function using some
starting guess value for the parameters, say, moment estimates
of k and ), and get the estimates of x and A\ as &, and
)\mle, respectively. Replacing © with @mle in Equation (3),
the MLE of Q(p;O) can be obtained as

1
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LSE

Suppose t(1.n) < tam) < -0 < L) Of size m be
the ordered random variables from a distribution function
F(t(i:n); ©). Therefore, LSEs of x and A, say Ajse and Nse
can be obtained by minimizing the following function

-
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with respect to x and \. Equivalently, they can be obtained by

solving the following equations
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respectively. Substituting the £SEs in Eqn. (3), we can get
the estimator as
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CME

By minimizing the following function, we can get the
Cramér-von-Mises estimates of the unknown parameters ~ and
)\7 say /%cme and )\cme
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These estimators can also be obtained from the following non-
linear equations:
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where k1 (+; ©) and k4 (+; ©) are defined in Eqns. (9) and (10),
respectively. Substituting the CMEs in Eqn. (3), we can get

the estimator as
1 1
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MPSE

The M'PS mathod was developed by Cheng and Amin
(1983) and showed that this method is as competent as the
MLEs. Based on a random sample of size n from the L&
distribution, the uniform spacings can be defined as follows
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The following function is maximized to obtain the MPSEs

of Kk and A\ L
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or, equivalently maximizing the following function
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MPSEs denoted as Rynpse and j\mpse can be obtained by
solving the following nonlinear equations
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where k1 (-;0) and ks (+;©) are defined in Eqns. (9) and
10), resli?'ectlvely Substltutmg the MPSEs in Eqn. (3), we
can get the estimator as

1
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IV. PARAMETRIC BOOTSTRAP CONTROL CHARTS

In this section, we develop parametric bootstrap control
chart for the £E percentiles as of the sampling distribution
of statistic for the £E percentile is not in hand. To develop
BCC for the LE percentiles, below the algorithm is provided
based on MLEs of © = (k, A).

1) If the process is stationary and under control, take

IC stochastic samples of each of size n; (j =
1, 2, , KC) randomly taken from an L& distribution
for unknown parameters x and A. We identify the mea-
surements of the j th value by z;; (i =1, 2,---, ny).

2) Using the MLEs given in Equations (3.6) and (3.7),

evaluate the MLEs of © = (&, \) with the combined

observations of size n = ) n,;.
J=1
3) Create a bootstrap values of size m, z7, =3, -+, Zj,

from the L& using the MLEs obtained in Step 2.
Here, M is the sample size which can be obtained for
forthcoming subgroup values.

4) Using bootstrap sample obtained in Step 3 and obtain

the MLEs, &%, and A%,
5) For bootstrap S %group sample obtained in Step 3 and

Ok e = (&7, ,\*) in Step 4, find the bootstrap esti-
mate, Q*(p; ©7,,..) of the 100pth percentile Q(p; O)mie,
where

Q (P O) e = log[1 + (—) Fale ] for 0 < p < 1.

mle

6) Repeat Steps 3-5, quite a large number of times say, B,

to obtain BB bootstrap estimates of Q(p; é)mle, denoted
s {Q*(j)(p;é)iiﬂe; J=1,2 -, B

7) Using the B bootstrap estimates obtained in Step 6, next
obtain the 100({/2)th and 100(1 — {/2)th percentiles.
Here, ( is the probability that a value which is regarded
as out of control when the process is assumed as in
control, i.e., false alarm rate (F.AR). Thus 100({/2)th
and 100(1 — ¢/2)th percentiles are the lower control
limit £CL and the upper control limit Z/CL towards the
(BCC) of FAR = (, respectively. It is understood that
various interpretations of the observed percentiles have
been proposed in the statistics literature. Let,

B
* AN * 1 A A *
Q (p;(a)mle = E ZQ (j)(pa @)mle
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and Q* ) (p; @)mle be the 7 percentile of
Q"D (p; )i T =1, 2, -+, B}, ie.,
Q*)(p; ©),,, is such that
B
LS (P 00 <@ miO)) = mo<r<l,
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where In(.) is the indicator function. Hence, UCL,
control limit (CL), LCL are as follows:

UCL = Q*(BXlOO(l—C/Q))(p; é):nle
CL = Q" (p;O)ue
LCL = Q BXIOO(C/Q))(p @)
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Now, if the method of ML is replaced by the method
of LS, method of CM and method of MPS for the
steps 1-3, then we get the bootstrap estimates (], Af,)»
(/%Zme,j\zme), (/%;Lpse,}\;pse), respectively. Hence, the plot

statistics for MLE, LSE, CME and MPSE are Q* (p; ©)*

- 7! . - A . mle’
Q™ (P; O)fser Q (15 0) e and Q" (p; ©)5, 5. Tespectively. Af-
ter the completion of construction of £LCL and UCL of a
control chart in Phase I, the monitoring process continues
in Phase II with the drawing of future samples each of size
M from LE distribution and calculation of plot statistic,
respectively. In case the plot statistic is between LCL and
UCL, the process is said to be in control, otherwise the control
chart indicates for out-of-control.

V. SIMULATION AND DISCUSSION

In this section, Monte Carlo simulation study is conducted
to check the performance of the LE percentile BCCs (MLE,
LSE, CME, MPSE) using R package, an open-source
developed by Ihaka and Gentleman (1996). Now, the
under control nominal average length (ARL) is defined
by ARLy, = 1/v for every committed false alarm rate
(FAR) . The performances of the L£E percentile control
charts are examined based on simulated in-control ARLp,
and simulated out-of-control average run length ARLp,
and their corresponding standard errors of run lengths
(SERLs) respectively. Also, the behaviour of the BCCs for
LE percentiles are assessed by obtaining the average LCL
and UCL and their associated standard errors (SE&s) from
simulations.

For the present investigation, the L& distribution with
k = 4.31359 and A = 0.38756, which is connected with
the real life application is considered in next section. The
simulation study is carried out with subgroup size M = 5,
subgroup number K = 20, and different levels of FARs
Yo = 0.01,0.05,0.0027. The given 7’s are known as Type-I
errors for real life applications in quality control. The
chart constants of bootstrap charts are computed by using
B = 5,000 bootstrap observations. For each simulation
run, the ARL, this can be determined as the number of
subgroup needed to the first out-of-control observed, and
corresponding SERLs are obtained. The average LCL,
UCL and corresponding SEs are also obtained based on
5,000 bootstrap samples. Due to page constraint, displayed
some portion of results for the M = 5, K = 20 and
p = 0.01,0.05,0.10) are given in Tables 1-4 for MLE,
LSE, CME and MPSE. Most of the truncated life tests
are designed based on the mean lifetime. On the other
hand, in numerous applications in industry, the small
percentile of lifetime is needed to convene engineering
intend purpose. Lio et al. (2010) suggested that the mean is
not a good index to grab the change on the quality of the
manufactured goods lifetime. For instance, products would
be accepted due to a little decrease in the mean lifetime after
inspection. However the smaller lifetime percentile would be
significantly below the consumers anticipation. Tables 1-4
show the simulated ARLp, and the corresponding SERLs
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for the MLEpR, LSER, CMEpE and MPSE g, respectively.
For 79 = 0.01,0.05,0.0027, all the MLER, LSER, CMEp
and MPSEp are competitive irrespective of the sample size
and P values, excluding at CME g has the simulated ARL g,
smaller as compared to yp = 0.10,0.05. For vy = 0.0027,
CMEp has the simulated ARLy, greater than their counter
part 79 = 0.0027. The associated SERLs in Tables 1-4
notice that the simulated 5,000 run lengths are coherent for
all control chart. Comprehensively, the MLE g and MPSE g
out perform the other bootstrap charts.

The average UCL and LCL and the associated SEs are
determined as specified below: for every set of X individual
observations of size n (K = 20 observations of the same
size were used from the simulations) computed from a L&
distribution with a given shape and scale parameters « and A,
as explained in Step 1, Steps 2 — 7 were then accomplished
with B = 5,000 to bring forth control limits. The total
procedure (Steps 1 —7) was recapitulated 5,000 times and the
average LCLs and UCLs were determined based on 5,000
recapitulated values of LCLs and UCLs, respectively. The
adhering SEs of the control limits were also determined from
the corresponding 5,000 values. A few simulation results
of the average LCL and UCL with the agreeing SEs are
provided at Tables 1-4 with sample size 5 for MLE g, LSE g,
CMEp and MPSEp of percentile estimates. From Tables
1-4 noticed that the standard deviations are modest relative
to the representing control limits. It has been also observed
that the simulated coefficient of variations (CVs) are less than
0.0084 for all the control limits of MLE g, tinier than 0.0087
for all the control limits of MPSE g, tinier than 0.0097
for all the control limits of £LSEg and tinier than 0.0127
for all the control limits of CMEp. Hence, the proposed
constructing procedure for MLEp and MPSEp can render
stable control limits and furnish helpful advising to develop
control chart in the real scenario. Since MLE g and MPSE
shows improve performance based on simulated AR Ly, than
the other studied control charts, MLE g and MPSE g will be
considered for further interrogation to examine the ARLp,
for out of control process. Control limits of MLE g, LSE B,
CMEp and MPSEp are developed with phase I samples.
Hence, next observations are produced from beyond control
process. The beyond control observations are then applied
to calculate ARLf;, and the representing SERL. One can
implemented beyond control mechanism in the below manner:
Assume )y of the in control process be constant, also
decrease from rq to for the under control process to a tinier
value k; for the beyond control process and can observed that
which one is more sensitive to supervise a descending shift of
the L£E percentiles. Actually, this situation is also discussed in
the next section with the help of a numerical example.

VI. APPLICATION

Here, we consider an example comprises to 67 specimens
of Alloy T'7987 that failed before having accumulated 300
thousand cycles of testing and was initially considered
by Raqab et al. (2017). The dataset is fitted with the L&
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distribution and the MLEs for the parameters  and A are
4.31 and 0.39 respectively for which the p value of one
sample Kolmogorav-Smirnov (KS) statistic is 0.5814. We
generated K = 20 under control Phase-I observations each
of size M = 5 form LE distribution with k9 = 4.31 and
Ao = 0.39. All the 20 samples of size 5 are given in Table 6.

Let the industrial quality officers are considered with the
lifetime quality of cycles of testing of the tenth percentile,
Q(p = 0.10; 09 = (ko = 4.31, o = 0.39)) = 1.21 and the
process is considered as beyond control state in Phase II with a
shift of the parameters g to k1 = 3.51 when Ay = 0.39. Table
7 displays 20 out of control Phase II samples. The MLE R
chart was demonstrated using Table VI with v = 0.0027 and
B = 5,000. The bootstrap chart control limits based on MLEs
are obtained by

UCL = 2.452
CL=1.324
LCL =0.871

From Figure 1, it is observed that the MLEpR gives asym-
metric control limits the CL and display statistic of sample
percentiles at p = 0.10 at sample 7 is close to LCL, but
it did not show out of control. It is signal out first at the
sample point 52. As a matter of fact that except sample 52,
all the sample statistics plotted in Figure 1 are lie between
the lower and upper control limits. The proposed parametric
BCCs appears as pretty powerful and can be well carried out
for the case where one necessarily to follow L& distribution
for the probability of process measurements. To heighten the
defensiveness of the MLER to alarm an out-of-control, we
suggested to look at employ 25 Phase I observations entirely
for size 6 or apply 20 Phase I observations entirely for size 8
to develop the MLE 5.

(%3
5 ucy
z
Q ()
S
J)
o
> o
= R o CcL
E P o g = - P -, Dm0 = Py 2P pm s =
) o
o o
e e e o e e e e e e e e e e — — ——— ° —_—-
LCL

Sample number

Fig. 1. MLEp control chart for the Phase-II data set when v = 0.0027.
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VII. CONCLUSIONS

The parametric BCCs based on the different classical meth-
ods of estimation, viz., MLE, LSE, CME and MPSE,
respectively are developed to supervise the percentiles of the
LE distribution. The sampling distribution of the statistic for
the LE percentile is not available. Thus, the conventional
Shewhart control chart SCC for the L& distribution is not
tractable. Therefore, in this article, we propose to use BCC
in order to deal with the issues described. Using extensive
Monte Carlo simulations, we established that the ARL for
MLEp chart provide good results for L£LE percentiles by
the developed parametric bootstrap approach. The sampling
distribution of the predicted statistic for the L& percentile
is generally asymmetric and is not suitable for small sample
numbers, hence the parametric BCC should be used instead.
Therefore, it is advised to monitor the L& percentiles in
practise using the M LE 5. We can take into account additional
observations in each sample for Phase I to produce the control
chart, which will enhance the MLEp’s capacity to warn a
signal that is outside of the acceptable range. In further study,
the suggested approach can be expanded to a variety of lifetime
distributions.
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TABLE 1
IN-CONTROL AR L ESTIMATE, CORRESPONDING SER L, AVERAGE LCL,
UCL AND CORRESPONDING SES FOR M LE g CHART FOR
0 = 0.10,0.01,0.0027 FARS.

K =20, M =5 % = 4.31350 X = 0.38756
Percentile ARL SERL  LCL SE UCL SE
70=0.10 (FAR) ARLp, = 10
p=001 100036 0.1328 05871 00322 2.8973 0.0521
p=005 100753 0.1377 06122 00345 29122 0.0537
p=0.10  10.1128  0.1397 0.6348 0.0382 2.9366 0.0543
p=025 102652 0.1425 0.6893 0.0395 2.9762 0.0577
70=0.01 (FAR) ARLp, = 100
p =001 1033211 1.6892 05346 00311 3.1211 0.0657
p=005 108.7862 1.8123 0.5732 0.0327 3.2342 0.0662
p=0.10 1132237 19789 0.5984 0.0334 3.4126 0.0671
p=025 1193872 21136 0.6233 0.0346 3.4653 0.0683
70=0.0027 (FAR) ARLp, = 370.37
p =001 4162244 19768 04763 00304 3.2214 0.0677
p=005 4192981  1.9989 04983 0.0309 3.2563 0.0689
p=0.10 4237769 21327 0.5322 0.0314 3.4987 0.0694
p=025 4341174 22249 05553 0.0321 3.5436 0.0711
TABLE I

IN-CONTROL ARL ESTIMATE, CORRESPONDING SER L, AVERAGE LCL,
UCL AND CORRESPONDING SES FOR LSE g CHART FOR
~o = 0.10,0.01,0.0027 FARS.

K =20, M=5 r = 4.31359 X = 0.38756
Percentile — ARL _SERL ___LCL S&_uct SE
70=0.10 (FAR) ARLp, = 10
p=001 100006 0.1287 05237 00313 29347  0.0566
p=005 100022 0.321 05732 00319 29983  0.0573
p=010 100759 01389 0.6089 00327 3.0729  0.0589
p=025 101127 01422 06322 00335 3.1123  0.0613
70=0.01 (FAR) ARLp, = 100
p=001 1000764 13233 05113 00296 3.1749  0.0699
p=005 100.8832 1.6679 05423 00311 3.2238 00714
p=010 103.0914 19348 05783 00321 32981  0.0722
p=025 1061127 20237 06127 00330 3.3318  0.0732
70=0.0027 (FAR) ARLp, = 370.37
p=001 4073754 15237 04234 00293 33321 00724
p=005 4107764 17866 04673 0.0308 34612  0.0733
p=010 4142217 20978 04982 00317 3.5211 00747
p=025 419.8876  2.6893 05359 0.0327 3.5982  0.0766
142



TABLE III
IN-CONTROL AR L ESTIMATE, CORRESPONDING SER L, AVERAGE LCL,

UCL AND CORRESPONDING SES FOR CME g CHART FOR
~0 = 0.10,0.01,0.0027 FARS.
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K=20, M=5 = 4.31359 X = 0.38756
Percentile ARL  SERL  LCL SE  UCL SE
~0=0.10 (FAR) ARLy, = 10
p =001 01356 0.1223 05188 0.0309  2.9961 0.0611
p =005 95022  0.1311 0.5632  0.0321 3.1427 0.0626
p=0.10 10.0049  0.1359  0.5976  0.0332  3.2671 0.0637
p=025 101211  0.1453  0.6322  0.0347 3.3246 0.0645
~0=0.01 (FAR) ARLy, = 100
p =001 992316  1.3444 04998 0.0288 3.1929 0.0717
p =005 99.8752  1.5632 0.5327 0.0307 3.2893 0.0732
p=010 102.0722 1.8746 0.5876 0.0321 3.3879 0.0743
p=025 1042465 1.8978 0.6457 0.0334  3.4562 0.0766
~0=0.0027 (FAR) ARLy, = 370.37
p =001 4042465 14356 04089 0.0288  3.4327 0.0755
p=005 4063576 1.6782 04239 0.0297 3.5489 0.0769
p=010 4084982  1.8978 04892 0.0312 3.6123 0.0786
p=025 4117679 20861 0.5348 0.0326 3.6987 0.0798
TABLE VI
FORTY OUT-OF-CONTROL SUBGROUPS GENERATED FROM LE
DISTRIBUTION WITH k1 = 3.51, Ag = 0.39.
Subgroup Generated data set Subgroup Generated data
I ARL TABLE 1V SERL ror number number
N-CONTROL ESTIMATE, CORRESPONDING , AVERAGE N
UCL AND CORRESPONDING SES FOR MPSE g CHART FOR g; }g% (1)33 }g} }471(3) %28 3; %;8 (1)% ;8?
70 = 0.10,0.01,0.0027 F ARS. 23 207 122 248 141 129 43 1.02 237 142
24 426 151 143 185 181 44 1.68 230 1.71
K=20,M=5 x = 4.31359 A = 0.38756 25 131 161 112 200 1.17 45 204 125 1.39
Percentile ARL — SERL LCL SE UcL SE 26 210 292 117 136 2.00 46 155 270 1.08
70=0.10 (FAR) ARLp, = 10 27 1.65 053 253 099 247 47 112 244 268
p = 0.01 10.0043  0.1344 05632 0.0317 2.9027 0.0524 28 162 1.09 150 2.07 187 48 187 1.74 171
p =0.05 10.0766  0.1389  0.5832  0.0321  2.9237 0.0528 29 147 297 169 250 194 49 L79 162 093
p =0.10 10.1138  0.1407 0.6123  0.0327  2.9567 0.0533 30 289 283 239 1.73 238 50 185 1.77 159
p =025 102657  0.1436  0.6245 0.0333  2.9946 0.0538 31 219 229 287 270 254 51 232 150 120
70=0.01 (FAR) ARLp, = 100 32 099 119 094 1.68 236 52 020 1.69 1.50
p=001 1033216 1.6011 05233 00303 3.1428 0.0681 33 135 214 295 130 204 53 238 125 216
p=005 108.7874 1.8184 0.5517 0.0309 3.1783 0.0694 34 143 147 190 106 192 54 211 123 1.26
p=0.10 1132248 19832 0.5843 0.0314 3.2239 0.0699 35 146 170 122 1.82 195 55 2.10 103 233
p=025 1193891 2.1177 05987 0.0321 3.2763 0.0712 36 148 1.18 160 129 083 56 L62 127 157
~0=0.0027 (FAR) ARL 1, = 370.37 37 147 196 219 212 166 57 149 099 121
p =001 4164572 19981 04544 00301 3.2967 0.0711 38 139 3.04 220 178 185 58 303 196 083
p=005 4193237 19992 0.4862 0.0309 3.3256 0.0718 39 149255 198 180 197 59 264 125 041
p=0.10 4238793 21357 05127 00317 3.3891 0.0726 40 L74 121 191 191 340 60 103 168 3.03
p=025 4341321 22281 05438 0.0324 34312 0.0733
TABLE V
ToP 20 SUBGROUPS GENERATED FROM LE DISTRIBUTION WITH
ko = 4.31, A0 = 0.39.
Subgroup Generated data set Subgroup Generated data set
number number
1 214 226 197 157 143 11 193 196 213 199 1.6l
2 146 250 262 077 150 12 149 341 182 149 193
3 196 239 221 216 215 13 090 1.88 203 143 128
4 214 232 258 258 1.66 14 230 221 184 183 1.66
5 194 252 230 218 210 15 132 189 152 150 129
6 120 201 162 215 1.66 16 143 279 215 226 191
7 295 205 222 147 249 17 271 207 097 264 155
8 181 269 212 136 082 18 265 173 182 184 1.07
9 1.60 135 202 181 1.73 19 260 128 185 185 1.59
10 196 168 106 133 1.6l 20 175 135 283 163 141
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