Jokhan Ram

Retired Professor
Ph.D (BHU)
Contact Information:
Tel: +91 542 230 7309
Fax:+91 542 2368390/2368174
E-mail: [email protected],[email protected]

 
Academic Qualifications:
S. No.DegreeInstitutionYear
1.M.Sc.Banaras Hindu University1970
2.Ph. D.Banaras Hindu University1975
 
Brief writeup on area of specialization/awards/achievements:
 


Theoretical Condensed Matter Physics

  1. Integral equation theories for atomic and molecular fluids.

  2. Phase transition : Density functional theory of freezing.

  3. Computational physics.

Contact Information:
Physics Department, Banaras Hindu University, Varanasi 221005
Tel: +91 542 230 7309 Fax:+91 542 2368390/2368174
Awards:


  • 1980-1983 Visiting Professor, University of Guelph, Canada.

  • 2002-2002 Visiting Professor, OSU, Corvallis, USA.

Full List of Publications:

  1. On the inclusion of triplet potentials into the Born-Green theory of fluids Y. Singh and J. Ram, J. Phys. Soc. Japan 33 (1972) 585-592

  2. On the quantum corrections to the radial distribution functions and the thermodynamic properties of fluids, Y. Singh and J. Ram, Moles. Phys. 25 (1973) 145.-160

  3. On the quantum corrections to the virial coefficients of the equation of state of a fluid J. Ram and Y. Singh, Moles. Phys. 26 (1973) 539-547

  4. On the quantum correction to the radial distribution function and the thermodynamic properties of fluids II., Y. Singh and J. Ram, Molec. Phys. 28 (1974) 197-208

  5. First quantum correction to the radial distribution function and the thermodynamic properties for a fluid of hard spheres, J. Ram and Y. Singh, Molec. Phys. 30 (1976) 629-640

  6. Perturbation theory for the fluids of nonspherical molecules in the presence of three body forces II, K.P. Shukla, J. Ram and Y. Singh, Molec. Phys. 31 (1976) 873-882

  7. Perturbation theory for the radial distribution function in the presence of three body forces J. Ram and Y. Singh, J. Chem. Phys. 66 (1977) 924-933

  8. Equilibrium properties of dense simple fluids in the presence of three-body forces S.K. Sinha, J. Ram and Y. Singh, J. Chem. Phys. 66 (1977) 5013-5020

  9. Semiclassical statistical mechanics of a two dimensional fluid II. Equilibrium properties of a dense hard-disc fluid, J. Ram, Y.S.Sainger and Y. Singh, Molec. Phys. 45 (1982) 1141

  10. A test of computer simulation of low density gases J. Ram, R. Barker, P.T. Cummings and P.A. Egelstaff, Phys. Chem. Liquid 11 (1982) 315-325

  11. Evaluation of the SSC/LBNC, SSCF and PY approximations for short ranged anisotropic Potentials, P.T. Cummings, J. Ram, R. Barker, C.G. Gray and M.S. Wertheim, Molec. Phys. 48,(1983) 1177-1207

  12. Evaluation of the CPY and PVX approximation for short-ranged anisotropic potentials P.T. Cummings, J. Ram, C.G. Gray and M.S. Wertheim, Molec. Phys. 50, (1983) 1133-1140

  13. Anitsotropic screening in polar fluids and the extent of its accommodation by molecular perturbation theories that use sphericalized reference states S. Singh, J. Ram and S. Goldman, J. Chem. Phys. 80 (1984) 3748-3752

  14. Dynamic structure of dense krypton gas F.A. Egelstaff, J.J. Selacuse, W. Schommers and J. Ram, Phys. Rev. A30 (1984) 374-378

  15. Evaluation of the SCF and PY approximations for quadrupolar fluids J. Ram, Pramana 23 (1984) 519-528

  16. Structure of dense krypton gas: Percus Yevick and Monte Carlo results J. Ram and P.A. Egelstaff, Phys. Chem. Liquid 11 (1984) 29-46

  17. Equilibrium theory of fluids in the presence of three-body forces S.K. Sinha, J. Ram and Y. Singh, Physica A 133 (1985) 247-280

  18. Density-functional theory of nematic phase : Results for a system of hard ellipsoids of Revolution, J. Ram and Y. Singh, Phys. Rev. A44 (1991) 3718-3731

  19. Solution of the Percus-Yevick equation for pair correlation functions of molecular fluids J. Ram, R.C. Singh and Y. Singh, Phys. Rev. E 19 (1994) 5117-5126

  20. Thermodynamically self-consistent integral equation theory for pair correlation function of a molecular fluid, R.C. Singh, J. Ram and Y. Singh, Phys. Rev. E54 (1996) 977-980

  21. Density functional theory of liquid crystals surfaces Y. Singh and J. Ram, Mol. Cryst. Liq. Cryst. 288 (1996) 143-152

  22. Integral equation theory for molecular fluids: effect of quadrupolar interactions S. Gupta, Jokhan Ram and R.C.Singh, Physica A 278 (2000) 447-468

  23. Molecular theory of elastic constants of liquid crystals III. Application to smectic phases with tilted orientational order, Yashwant Singh and Jokhan Ram, Phys. Rev. E 64 (2001) 051705 (1-15)

  24. Structure and freezing of fluids interacting via the Gay-Berne (b-6) potentials Ram Chandra Singh, Jokhan Ram and Yashwant Singh, Phys. Rev. E 65 (2002) 031712 (1-11)

  25. Effects of molecular elongation on liquid crystalline phase behaviour: isotropic-nematic Transition, R C.Singh and Jokhan Ram, Physica A 326 (2003) 13-24

  26. Structure and freezing of a fluid of long elongated molecules Pankaj Mishra, Jokhan Ram and Yashwant Singh, J. Phys.: Condens. Matter, 16 (2004) 1695-1705

  27. Effect of shape-anisotropy on the phase diagram of Gay-Berne fluid Pankaj Mishra and Jokhan Ram, Eur. Phys. J. E 17, (2005) 345-351

  28. Thermodynamically self-consistent integral equation theory for pair-correlation functions of molecular fluids-II, Ram Chandra Singh and Jokhan Ram,, Physica A 369, 493 (2006)

  29. Pair correlation functions and a free-energy nematic phase Pankaj Mishra, S.L. Singh, Jokhan Ram and Yashwant Singh, J. Chem. Phys. 127,(2007)

  30. The Perves Yevick approximation for quadrupolar molecular fluids R.C. Singh, B.M. Singh and Jokhan Ram, J. Phys: Cond. Matt. 21 (2009) 115101 (1-7)

  31. Study of isotropic-nematic transition of quadrupolar Gay Berne fluid using density functional Approach, R.C. Singh and Jokhan Ram, PHASE TRANSITIONS 84 (2011) 1084-1097.

Designed and Developed by: Dr. R.S.Yadava, Computer Centre, BHU     |    Redesigned by: Haribansh Mishra ICT Sector, BHU
© 2018 - , Banaras Hindu University, [BHU], Varanasi-221005, U.P., India.    |    Maintained by : Computer Centre, BHU     |    Use a latest browser for best visibility