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Heat shock response is a homeostatic adaptive response exhibited by nearly all cells in response to thermal and a
variety of other stresses. In this article, the nature, functions and regulation of the various families of heat shock
proteins are presented first and this is followed by an account of studies in the author’s laboratory relating to the
expression and regulation of some of the heat shock protein-coding genes and the non-coding hsrw gene in
Drosophila. Our studies showed that unlike the common belief, different cell types of Drosophila exhibit
differential activation of the various heat shock genes in a developmental stage and cell type specific manner.
Transcripts of the different members of the HSP70 gene family are differentially induced and turned over in
various cell types. A unique set of proteins, which includes the HSP64, is induced immediately after heat shock in
larval Malpighian tubules while none of the typical heat shock proteins are induced in this tissue till at least one
hour after heat shock. Interestingly, in most other tissues, HSP64 is not induced by heat shock. The heat indusible
93D or the hsra gene of Drosophila melanogaster does not code for any protein. This gene is developmentally
active and is also singularly induced by a variety of amides. Recent studies in our laboratory showed that one of
its multiple non-coding transcripts is instrumental in the organization of nuclear omega speckles, which seem to
be very important for regulation of availability of the heterogeneous nuclear RNA binding proteins (hnRNPs) for
RNA processing activities in unstressed and stressed conditions as per contemporary requirements of the cell.
Accordingly, over- as well as non-expression of this gene under normal conditions has severe consequences. It is
likely that an equivalent of the non-coding hsrewgene is present in all other organisms as well. Future studies are
expected to reveal the physiological bases of such pronounced as well as subtle differences in the stress response

mounted by different cells of an organism and their evolutionary significance.
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Introduction

The heat shock response was discovered by Ritossa
(1962) as the induction of a specific set of puffs in
polytene chromosomes of salivary glands of
Drosophila larvae in response to a brief exposure to
elevated temperature or to chemicals that disrupt
oxidative metabolism of the cell. A little more than a
decade later, Tissieres et al. (1974) and Lewis et al.
(1975) reported the synthesis of a novel set of
polypeptides in Drosophila tissues exposed to
elevated temperature. The discovery of heat shock
(HS) induced synthesis of a novel set of polypeptides,
the HS proteins or the HSPs, stimulated a remarkable
flurry of research activity so that within a short time,
the HS or the stress response was established as a

major field of study to not only understand the
survival strategies of living organisms in their every
day life but also to understand the mechanistic details
of gene expression and regulation (Schlesinger et al.
1982). It was obvious that the HS response evolved
very early in the history of living organisms as a
homeostatic mechanism to protect the cellular
machinery from damages inflicted by a variety of
adverse environmental factors like temperature,
oxidative stress, salinity, osmolarity, heavy metals,
genotoxic compounds etc. The well orchestrated
changes in the transcriptional and translational
activities of individual cells in response to such
environmental stresses are collectively termed as “heat
shock” or “stress” response (Schlesinger et al. 1982).
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As remarked by Ashburner (1982), “The heat-shock
response had been shown not only to be universal but
also to occur under a wide variety of different stress
conditions”.

My own interest in the HS genes in Drosophilawas
aroused because of a serendipitous finding that one
of the major HS genes of Drosophila melanogaster, the
93D locus, was singularly inducible with benzamide
(Lakhotia & Mukherjee 1970, 1980). Later studies
directed at understanding this gene’s organizationand
functions revealed many unusual and interesting
aspects, not only concerning this particular gene but
also about other HS genes. In the following, the HS
paradigm is described first and this is followed by an
account of the studies carried out in my laboratory
during the past 2-3 decades on these aspects.

Heat Shock Response
Sudden increase in the cellular temperature, beyond
the normal physiological range of the species, is
recognized by the cell as “heat shock”, which results
in transcriptional activation of a set of genes, the HS
genes. The ongoing transcription of most other genes
is generally inhibited under such conditions. Inhigher
organisms, the pre-existing mRNAs are typically
sequestered and not translated under the conditions
of stress. The ribosomal machinery of a heat shocked
cell preferentially translates the newly synthesized
HS mRNAs resulting in synthesis and rapid
accumulation of HSPs (Tissieres et al. 1974, Lewis
et al. 1975, Lindquist 1986). Lewis et al. (1975) made
an important observation that all the examined cell
types of Drosophila displayed a remarkably similar
induction of a new set of HSPs. Interestingly, the
temperature at which the cells optimally respond to
HS varies considerably in different organisms, e.g.,
24-28°C for salmon embryos, 33-35°C for yeast, 35-
38°C for Drosophila, 35-40°C for plants and 40-44°C
for birds and mammals (Lindquist 1986). Even within
a group, there are significant variations in relation to
specific environmental adaptations. Thus compared
to the temperate species of Chironomus, the tropical
species show maximal response to HS at a higher
temperature and also survive better at such
temperatures (Nath & Lakhotia 1989). Likewise,
blow flies and houseflies can withstand much higher
temperature than Drosophila (Tiwari etal. 1995, 1997).
Apart from heat stress, other environmental
stresses like amino acid analogues, transition heavy
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metals, uncouplers of oxidative phosphorylation,
recovery from anoxia, chemotherapeutic agents,
pathophysiological states like viral infection, fever,
inflammation, ischemia, hypertrophy, malignancy
etc. are also known to induce some or all of the HSPs
(Morimoto et al. 1992, 1994, Csermely 1998). The
cellular levels of HS proteins are elevated in certain
chronic diseases like Hashimoto’s thyroiditis,
Graves’ disease, arthritis and artherosclerosis
(Morimotoet al. 1990). Localized tissue injury can also
induce HSPs (Gower et al. 1989, Morimoto et al. 1990).

Heat Shock Protein Families

The HS genes and the mechanisms of their induction
under conditions of cellular stress are conserved
across the different phylogenetic groups (Schlesinger
et al. 1982, Nover 1984). The HSPs are broadly
classified according to the apparent molecular
weight, amino acid sequence homologies and their
functional aspects (Nover 1984) into 5 major
families: HSP100 family (100-104 kDa), HSP90 family
(82-90 kDa), HSP70 family (68-75 kDa), HSP60
family (58-65 kDa) and the small HSP family (15-30
kDa). HSP70 family proteins are the most conserved
proteins among the HSP families followed by the
HSP90, HSP100, HSP60 and small HSPs. Other than
these, several other minor HSPs are also synthesized
during HS (see later). Homologs of the HSPs are also
often present under normal physiological or
unstressed conditions and are termed as HS
cognates (HSC). The chromosomal locations of the
major HS genes in Drosophila melanogaster are
shown in figurel.

The HSP100 Family

The clp or the HSP100 gene family codes for
constitutive and stress inducible proteins in the range
of 100-110 kDa (Parsell et al. 1991, Squires & Squires
1992), which function as regulators of energy
dependent proteolysis and as molecular chaperones
(Clarke 1996). They stabilize certain polypeptides
during severe thermal stress and either enable
resolubilization of non-functional protein aggregates
or target the irreversibly damaged polypeptides for
degradatidn. The eukaryotic HSP100 members play
an important role in thermotolerance (Sanchez &
Lindquist 1990, Parsell et al. 1991). An HSP100
homolog has not yet been identified in Drosophila.



Heat Shock Genes

Figure 1 Polytene chromosomes of D. melanogaster larval
salivary glands showing locations of the major heat shock
genes. The chromosomes in A are from an unstressed
salivary gland while those in B are from a gland that was
heat shocked at 37°C for 30 min before squash preparation.
Note the presence of heat shock induced major puffs at 87A,
87C, 93D, 95D sites on 3R and 70B, 67B, 64F and 63B sites on
3L in B but not in A. The three HSP64 genes, located at the
sites 10A on X, 21D and 25E on 2L, respectively, are not
induced by heat shock in larval salivary glands

The HSP90 Family
Members of the HSP90 molecular chaperone family
are mainly cytoplasmic (Lindquist & Craig 1988). In
mammals, this family includes the two major molecular
chaperones of the cytosol, the HSP90 (90 kD) and the
94 kD glucose regulated protein, grp94. In most cells
the HSP90 family proteins account for 1-2% of all
cellular proteins (Csermely et al. 1998). HSP90 family
members are apparently involved in diverse cellular
functions in view of their association with a wide
variety of cellular proteins like steroid receptors,
histone H1, cytoskeleton, HSP56, HSP70 etc. (Jakob
& Buchner 1994, Csermely et al. 1998, Caplan 1999).
The HSP90 family member in Drosophila is the
HSP83 gene located at the 63BC locus (figure 1).
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Besides being heat inducible, the HSP83 is
constitutively expressed at high levels during normal
growth (Chomyn & Mitchel 1982, Zimmerman et al.
1983, Xiao & Lis 1989, Ding et al. 1993, Yue et al. 1999).
HSP83 gene is the only HS protein-coding gene in D.
melanogaster with an intron (Hackett & Lis 1983).
Like the mammalian HSP90, HSP83 in Drosophila is
also mostly cytoplasmic in unstressed as well as heat
shocked cells but Morcillo et al. (1993) showed that
after heat shock, HSP83 is also present at the heat
induced 93D puff. Lange et al. (2000) reported HSP83
in centrosomes in Drosophila and vertebrates
(HSP90). Rutherford and Lindquist (1998) made an
interesting observation that heterozygosity for
HSP83 recessive mutation in Drosophila results in
revelation of a wide variety of otherwise cryptic
morphological abnormalities, the nature and extents
of which depend upon the specific genetic
background and environmental conditions in which
the heterozygosity for the HSP83 mutation is
introduced. Thus this family of proteins has been
suggested to provide a simple molecular mechanism
for evolvability (Rutherford 2000).

The HSP70 Family
The HSP70 protein family is highly conserved with
~50% amino acid identity among all characterized
species from bacteria to man (Feige & Polla 1994,
Morimoto et al. 1994, Macario et al. 1999) and is the
most abundantly induced protein in stressed cells.
An important feature of this family is its multi-
member composition, e.g., 14 in yeast and 11 in
Drosophila, (Rassow et al. 1997). Some members of
the HSP70 gene family, the HS cognate or HSC70
genes, are constitutively expressed while others, the
HSP70 genes, are induced by heat and other stresses.
HSP70 plays critical role in thermotolerance in
bacteria (the DnaK protein), yeast, Drosophila and
mammalian cells (Parsell & Lindquist 1994). A
member of this family, the HSP73, is present in the
centrosome and seems to help in its reorganization
after darhage by the heat stress (Perret et al. 1995,
Brown et al. 1996). HSP70 also protects cells from
oxidative damage with mitochondria as the targets
for protection (Polla et al. 1996, Mallouk et al. 1999).
The interactions between HSP70 and ATP may decide
the cell survival, necrosis or apoptosis (Mallouk et al.
1999). HSP70 has varied roles in modulating the
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inflammatory and immune responses (Polla et al.
1998, Basu & Srivastava 2001). There are inter-
individual variations in the basal levels of HSP70/
HSC70, which correlate with the level of stress-
induced synthesis of the major HSPs (Boshoff et al.
2000). Such inter-individual variations may be one of
the factors that make different individuals
differentially susceptible/resistant to various disease
conditions (Boshoff et al. 2000). Seasonal and
geographical variations have also been reported in
the constitutive and induced synthesis of HSPs (Nath
& Lakhotia 1989, Ultimasov et al. 1992). While
protective under stress conditions, over-expression
of HSP70 at physiological conditions is deleterious
for cells (Feder et al. 1992). It may also prevent
damaged and, therefore, potentially threatening
cells, from apoptosis (Samali & Cotter 1996).
HSP70 family in D. melanogaster includes both
heat inducible (HSP70 family) and constitutively
expressed HSC70 genes. Five different HSC70 genes
are expressed, with spatial and temporal variations,
under normal growth conditions in Drosophila
(Elefant & Palter 1999). Two different loci, 87A7 and
87C1, respectively, on the right arm of chromosome 3
(figure 1) carry clusters of genes coding for the heat
inducible HSP70 in D. melanogaster. The 87A7 site
carries two copies and the 87C1 site carries 3 copies of
the heat inducible HSP70 genes. The two clusters are
separated from each other by ~500 kb of DNA. At the
87C1, the proximal two HSP70 genes are separated
from the third gene by ~38 kb of DNA, which contains
many of repeats (see Nover 1984). The ap repeats
produce heat-inducible but non-coding RNAs of as
yet unknown function. The protein coding sequences
in these five HSP70 genes show 97% identity amongst
themselves; ~400bp upstream region also shows very
high homology between the 5 genes (Ingolia et al. 1980;
Karch et al. 1981). In contrast, the 3' untranslated
regions (3'UTR), comprising ~250bp from the
termination codon till the poly-A* site, of the two
HSP70 genes at 87A7 locus are similar, but different
from those of the HSP70 gene copies at the 87C1 locus.
Interestingly, the 3"UTRs of the proximal and the
middle HSP70 genes at the 87C1 locus are similar with
each other but are moderately diverged from that of
distal most HSP70 gene at this site (Torok et al. 1982).
All the five HSP70 genes have been shown to
transcribe in response to HS (Ish-Horowicz & Pinchin
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1980). Besides these 5 copies of FHISP70 genes, another
heat inducible gene belonging to the HSP70family, the
HSPé68 gene, is present at the 95D locus on the right
arm of chromosome 3 and this produces a 68kD
polypeptide (Holmgren et al. 1979).

The 2.4-2.5 kb intronless HSP70 transcripts are
undetectable in unstressed cells but are induced more
than 1000 fold upon HS (Velazquez et al. 1983). The
half-life of the HSP70 mRNAs also increases at least
10 fold under these conditions (Petersen & Lindquist
1988). During recovery from heat shock, the HSP70
genes are rapidly repressed and the HSP70 messages
are selectively degraded (Dellavalle et al. 1994).

Although the presence of the inducible forms of
HSP70 family members is regarded as a distinct
indication of a cell under stress and the concerned
genes are believed to be under a state of “readiness”
for rapid activation (see later), our studies have
revealed that regulation of HSP70 genes in different
cell types of Drosophila is much more complex. One
of the first examples of a differential activation of the
HSP70genes by the thermal stress was the differential
inducibility of their two sets at the 87A and 87C lodi,
respectively (see Lakhotia & Sharma, 1996 for
review). Our recent studies (Lakhotia 2001b,
Lakhotia & Prasanth 2001) have revealed more
remarkable differences in the HS induction and
stability of the transcripts of the HSP70 genes at the
two loci in different embryonic, larval and adult cell
types. For example, during later stages of embryonic
development, transcripts of the HSP70 genes at only
the 87A, but not at the 87C, were detectable upon HS
in the neuronal cells in embryonic central and
peripheral nervous system from stage 13 onwards.
Likewise, cells in the posterior part of the heat
shocked larval mid gut expressed only the 87A genes
and these cells continued to express 87A genes even
2 hrs after recovery from HS. These and other results
(Lakhotia & Prasanth 2001) reveal that the HS
inducibility of the HSP70 genes from the two loci is
differentially regulated during development and the
two sets of transcripts are metabolized in a cell- and
development-stage specific manner. Apparently, the
multiple copies of HSP70 genes are not just to make
more Hsp70 protein during HS. We also found a
constitutive expression of the HS inducible form of
HSP?70 in spermatogonial cells of D. melanogaster
(Lakhotia 2001b, Lakhotia & Prasanth 2001).
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The HSP60/Tcp1 Family

HSP60 family proteins are stress inducible as well as
constitutively expressed, are essential for growth
under all conditions and are found in the cytosol of
bacteria (the GroEL protein), in the matrix of
eukaryotic mitochondria and in the stroma of
chloroplasts (Hartl et al. 1992, Houry et al. 1999).
HSP60 family proteins, commonly also called
“chaperonins” (Hemmingsen 1992), exert functions
similar to those of HSP70 family proteins in assisting
protein folding (Houry et al. 1999). The chaperonins
require the presence of another co-chaperonin, the
GroES or HSP10, for effective binding with and
folding of proteins (Hartl et al. 1992, Georgopoulus
et al. 1994, Bukau & Horwich 1998). Interestingly
while the HSP70/Dna] complex associates
preferentially with short peptides or polypeptides in
extended conformations, the HSP60/GroEL proteins
show higher affinity towards partially folded
structures. These two families of proteins function
in sequential reactions during folding of a newly
synthesized polypeptide. The cytosolic homologs of
_HSP60 in eukaryotic cells are classified as TCP-1 or
TriC (TCP-1 ring complex, Gupta 1990), which are
hetero-oligomeric chaperones involved in the
folding of actin and tubulin.

The HSP60 family members in Drosophila have
been identified only very recently. My laboratory
(Lakhotia & Singh 1989) was the first to report the
HS induced synthesis of HSP64 as a member of a
novel set of polypeptides in Malpighian tubules of
Drosophilalarvae (figure 2A, Lakhotia & Singh 1989).
This protein was later shown to be a member of the
HSP60 family (figure 2B, Singh & Lakhotia 1995,
Lakhotia & Singh 1996). The H5P64 is not induced
by HS in any other cell type of Drosophila. It is
interesting that 1 hr after heat shock, synthesis of the
typical set of the common Hsps is induced in thelarval
Malpighian tubules (Krebs & Feder 1997, Priya
Srivastava, Prasanth K. V. & Lakhotia, unpublished)
but at this time the Hsp64 and other Malpighian
tubule-specific HS induced proteins are no longer
synthesized. Most intriguing, however, is our
observation that the HSP70 transcripts from both the
87A and 87C gene copies are induced immediately
in the larval Malpighian tubule cells after HS but their
transport to cytoplasm and translation are delayed
for about an hour. The significance of the HS induced
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Figure 2 Heat shock response in Malpighian tubules of
Drosophila larvae is very different from that in other
tissues. A. Fluorograph of *S-methionine labelled and
SDS-PAGE separated polypeptides from control (C) and
heat shocked (HS) salivary glands (5G) and Malpighian
tubules (MT) of D. melanogaster larvae. Note that unlike
in salivary glands, none of the typical HSPs (83, 70, 68, 27,
26, 23 and 22 kDa) are induced by heat shock in
Malpighian tubules; instead, a different set with a major
polypeptide of 64 kDa is induced in this tissue. B. The 64
kDa heat shock induced polypeptide in Malpighian
tubules is a member of the HSP60 family as revealed by
immunoprecipitation of *S-methionine labelled poly-
peptides using an HSP60 antibody and fluorography of
the SDS-PAGE fractionated immuno-precipitates from
contro} (C) and heat shocked {HS) Malpighian tubules.
Note the specific and stronger labeling of the 64 kDa
polypeptide in the heat shock lane (lane 2). The lanes 3
and 4 show fluorograph of total proteins from *S-
methionine labeled control and heat shocked Malpighian
tubules. Figures adapted from Lakhotia and Singh
(1989, 1996).
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transcriptional activation of one of the HSP64 genes
in Malpighian tubules and its negative correlation
with the synthesis of HSP70 and other typical HSPs
remains to be understood. It is interesting to note in
this context that in several insect species, the HS
response in different tissues, especially in Malpighian
tubules (in some cases in testes also), shows specific
deviations in terms of induction of the “HSP60”,
“HSP70” or a “mixed” type response (see Singh &
Lakhotia 2000). It appears that tissues like Malpighian
tubules have a different stress physiology and,
therefore, have evolved special regulatory
mechanisms. Further studies on this aspect are
expected to provide exciting insights.

The first HSP60 gene in D. melanogaster, localized
at the 10A cytogenetic region of the X chromosome
(figure 1), was cloned by Kozlova et al. (1997). The
Berkeley Drosophila Genome Project has unraveled
twomore HS5P60genes in D. melanogaster, oneat21D
locus and the other at 25E locus (figure 1). The
putative protein sequences of the two HSP60 genes
located at 10A and 25E are ~80% similar with each
other but the 21D gene shows only ~60% homology
with the other two. Recent studies in my laboratory
(Srivastava & Lakhotia 2000 and other unpublished
results) have revealed very interesting functional
differentiation of the three HSP60 genes in D.
melanogaster. The HSP64 from the 10A gene is
widely expressed in nearly all cell types in a
developmentally regulated manner while the HSP64
encoded by the 21D gene seems to have male germ
cell specific functions (also see Timakov & Zhang 2001).
On the other hand, the HSP64 gene at 25E appears to
be HS inducible in larval Malpighian tubules, gutand
fat bodies (Srivastava & Lakhotia 2000 and other
unpublished results).

The Small HSP Family

The small HSPs, a heterogeneous group with sizes
ranging from 20-30kDa, are the least conserved
among the HSPs (Lindquist 1986). This group of
genes also belongs to a multigene family in most
organisms (3 in nematodes, at least 4 major proteins
in Drosophila, 3 inmammals including crystallins and
>20 in plants but only 1 in yeast). Cytoplasmic
particles containing the small HSPs (sHSPs)
complexed with small RNAs have been isolated from
Drosophila and yeast during recovery from HS
(Arrigo et al.1985). sHSPs suppress aggre- gation of
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denatured proteins and promote their activation but
unlike HSP70 and HSP60, the chaperon activity of
sHSPsisindependent of ATP (Jakob et al. 1993, Arrigo
& Landry 1994).

There are four well characterized sHSPs (HSP28,
HSP26, HSP23 and HSP22) in D. melanogaster and
genes for all four of them are located at the 67B region
on the left arm of chromosome 3 (figure 1), within a
short stretch of DNA in the order HSP28, HSP23,
HSP26, HSP22. Three other HS inducible genes are
also localized at this site but these have not been well
characterized yet. Each of the sHSP genes has its own
promoter, with HSP26being transcribed ina direction
opposite to the other three (Petersen et al. 1979, Craig
& McCarthy 1980, Lindquist 1986). The four
Drosophila sHSPs have an overall homology of ~50%
(Southgate et al. 1983). The sHSPs shuttle between
nucleus and cytoplasm during HS and recovery-
(Arrigo & Landry 1994) and are found associated
with cytoskeletal components also (Leicht et al. 1986).
All these genes are expressed at normal temperatures
with each being independently regulated in a tissue-
specific manner (Southgate et al. 1983, Arrigo &
Tanguay 1991, Marin et al. 1993, Michaud et al.1997),
suggesting their different roles under normal (and
stressed) conditions. Their HS inducibility can also
be independently modulated. Thus we found
(Lakhotia & Singh 1988) that when D. melanogaster
larvae were reared at 10°C, their salivary glands
showed reduced synthesis of HSP23 not only
developmentally but also after heat shock, while the
other sHSPs did not appear to be much affected.

Other Members of the Heat Shock Gene Family
Besides the above major HS gene families, several
other genes/proteins that are induced by the heat
stress have been identified in different organisms.
Several peptidyl prolyl isomerases have been
identified as HSPs (Lilie etal. 1993). The Dna]j of E.coli,
stimulates the ATPase activity and release of protein
substrate from DnakK, the HSP70 homolog in
prokaryotes. The eukaryotic counterpart of Dna], the
HSP40, is also heat inducible and is believed to
participate in protein folding in association with
HSP70 (Wild et al. 1992). The ubiquitin too is heat
inducible. Ubiquitin binds with the heat denatured
proteins and targets them for degradation
(Hochstrasser 1992, Craig et al. 1994). In addition,
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several other eukaryotic proteins like y-interferon in
mammalian cells, albumin in rat liver (Srinivas et al.
1987), histone H2b in Drosophila, enolase and
glyceraldehyde-3-phosphate dehydrogenase in
yeast are also induced by heat (see, Lindquist 1986).
The ATP-dependent lon protease, lysU, one of the
E. coli lysyl-tRNA synthetases and rpoD, coding for
the sigma” subunitof RNA polymerase in prokaryotes,
are also heat inducible (see Lindquist 1986).

Regulation of Heat Shock Response

HS affects gene activity at transcriptional, post-
transcriptional as well as translational levels(table 1).
The most obvious effect is the selective and rapid
transcriptional induction of HS genes with a
concomitant repression of most of the ongoing
chromosomal transcription. RNA polymerase Il is
withdrawn from most chromosomal sites after HS
and is redistributed at the HS loci (Bonner & Kerby
1982). To facilitate such rapid activation, the Snends
of the HS genes (especially HSP70 genes) are
maintained in an open configuration (Costlow & Lis
1984, Lu et al. 1992). The GAGA factor, TATA-
binding protein (TBP) and the RNA polymerase 11
remain associated with the uninduced promoter
of the HSP genes like HSP70, HSP26, HSP27 etc
with the polymerase remaining paused after
transcribing about 25-30 nucleotides of these genes
(Rougive & Lis 1988, Giardina et al. 1992, Li et al.
1996, Weber et al. 1997).

HS activates the HS factor (HSF), which binds to
the highly conserved HS elements (HSE) in the
promoter of all eukaryotic HS genes (Morimoto et al.
1994, Wu et al. 1994). HSE is typically composed of 3-
6 alternatively oriented repeats of a 5bp sequence
motif, 5emGAAN-3nfAmin et al. 1988). The number of
HSEs at individual genes varies (Amin et al. 1988,
Fernandes et al. 1994). The monomers of HSF present
in unstressed nucleus trimerize in response to HS,
which binds to HSEs to transcriptionally activate the
HS genes (Westwood et al. 1991, Westwood & Wu
1993). A single HSF coding gene exists in Drosophila
as well as yeast, but multiple HSFs are present in other
organisms like tomato, mouse and man (Nover &
Scharf 1997, Morimoto 1998). Transcription of HS
genes under stress is autoregulated (DiDomenico et
al. 1982) so that inhibition of the synthesis of functional
HSPs during HS causes transcription of HS gene to
continue for much longer period; under such
conditions the HS mRNAs are very stable.
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Table 1 Transcriptional and post-transcriptional regulation in
heat shocked cells.
Level of regulation  [yeat shock genes Other genes
Transcriptional HS genes are Transcription of
rapidly transcribed  most other genes is
due to binding of inhibited and RNA
activated HSF with  polymerase Il is
HSEs in HS gene redistributed on HS
ptomoters genes
Post- Most HS mRNAs Splicing and
transcriptional are without introns  polyadenylation of
and thus are non-HS mRNAs are
rapidly transported  generally reduced/
to cytoplasm inhibited and the
without the need RNA-processing
for much factors are reorgani-
processing zed in the nucleus
Translational HS mRNAs are In higher eukaryotes
selectively translation of other
translated by normal transcripts is
ribosomes inheat  inhibited and the
shocked cells mRNAs are sequest-

ered till the cell
recovers from HS

RNA splicing and polyadenylation of the pre-
existing transcripts are also affected by HS (Yost et
al. 1990, Shen et al. 1993). Since most of the HS genes
do not contain introns, their transcripts are rapidly
transported to the cytoplasm without the need of the
usual post-transcriptional processing (Yost &
Lindquist 1986, 1988, 1991, Bond 1988). About 40%
of the HSP70 transcripts in D. melanogaster lack a
poly-A tail because of a rapid and selective removal
of poly-A from previously adenylated transcripts
(Dellavalle et al. 1994). High temperatures block the
turnover of the normally short-lived HSP70 mRNA,
allowing itsrapid accumulation (Petersen & Lindquist
1988). The 3tyTRs on HSP70 transcripts destabilize
them during unstressed conditions and during
recovery (Petersen & Lindquist 1988). Since new
transcription and processing of pre-existing
transcripts of most of the non-heat shock genes is
inhibited, the nuclear RNA processing proteins also
get redistributed in heat shocked cells (see later)

Translational regulation during HS in Drosophila
involves a rapid decay of pre-existing polysomes
(Krugger & Benecke 1981, Duncan 1996). Ribosomes
in heat shocked cells selectively translate the HS
mRNAs which bear unusually long and A-rich Sm
untranslated leader sequences (Klemenz et al. 1985,
McGarry & Lindquist 1985, Lindquist 1986, Kozak
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1988, Duncan 1996). Though synthesis of most of the
proteins is rapidly inhibited following heat shock,
translation of some mRNAs like those of core histones
continues unaffected (Farrel-Towt & Sanders 1984).

It is obvious that the above elaborate regulatory
strategies ensure a rapid production of the different
HSPs to salvage the damages inflicted by the stress
and to prevent further damages. Also since HSPs
can have a negative effect under non-stress
conditions {(Feder & Hoffmann 1999}, the regulatory
pathways ensure their quick disposal after the stress
is withdrawn. As already noted above, studies in
our (Lakhotia 2001b, Lakhotia & Prasanth 2001) and
other laboratories (see Feder & Hoffmann 1999) also
show that specific cell types can over-ride these
apparently universal regulatory circuits so that some
cells do not synthesize any of the HSPs under stress
while in other cell types, some or all HSP genes may
be subject to different transcriptional and/or post-
transcriptional regulations.

The 93D or the hsrw is an Unusual Heat Shock
Gene in Drosophila

The 93D (named after its location in the 93D
cytogenetic region of polytene chromosomes of
Drosophila melanogaster) or the hsrw (named after
its transcription products, HS RNA omega) locus is
an unusual member of the HS gene family in
Drosophila. This gene does not code for any protein
but seems to have very important cellular functions
under normal as well as stressed conditions.

The Inducibility and Architecture of the hsro
Gene are Conserved in the Genus Drosophila
but the Base Sequence is not

The hsraw gene is developmentally expressed in most
cell types (Lakhotia et al. 2001) and is strongly
induced by HS alongwith the other HS genes
(Mukherjee & Lakhotia 1979, figures 1B, 3B).
However, the most interesting feature of this gene
which attracted our attention was its singular
inducibility with benzamide (Lakhotia & Mukherjee,
1970, 1980, figure 3C). As a member of the HS gene
family, the 93D gene is induced by carbon dioxide,
recovery from anoxia, 2-4 dinitrophenol, arsenic
compounds etc (Ashburner & Bonner 1979,
Mukherjee & Lakhotia 1979, Lakhotia & Sharma 1996,
Lakhotia et al. 1999), but it is uniquely induced by
chemicals like benzamide (Lakhotia & Mukherjee
1970, Lakhotia & Mukherjee 1980), colchicine or
colcemid (Lakhotia & Mukherjee 1984, figure 4A) and
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several other amides (Tapadia & Lakhotia 1997).
These chemicals also inhibit most of the chromosomal
RNA synthesis (Lakhotia & Mukherjee 1970, 1980,
Tapadia & Lakhotia 1997).

An equivalent of the hsrw gene is present in all
species of Drosophila (figure 4B-1, Lakhotia & Singh
1982). In all species of Drosophila examined so far, the
hsre transcription unit includes a characteristic 5' end
(with 2 exons and an intron spanning ~1.9kb length)
followed by a long stretch (more than 5kb to ~15kb)
of short tandem repeats, which are unique to this locus
(Garbe et al. 1986, Hovemann et al. 1986, Lakhotia et
al. 1999). An intriguing feature of the hsrwgene is the
rapid divergence of base sequence in its transcribed
region in different species of Drosophila. In spite of
the high sequence diverg-ence, it shows comparable
inducible properties and produces several transcripts
of similar sizes and properties (Garbe et al. 1986,
Hovemann et al. 1986, Fini et al. 1989).

The hsre gene does not code for any protein
(Lakhotia & Mukherjee, 1982, Garbe & Pardue 1986,

c

Figure 3 The 93D puff is induced by heat shock in larval
salivary gland polytene chromosomes of D. melanogaster
alongwith the other heat shock puffs (like 87A and 87C)
but is singularly induced by a 10min treatment with 10mM
benzamide at 24°C. Parts of the right arm of chromosome
3 (3R) are shown from control (CON, A), heat shocked
(TS, B) and benzamide (BM, C) treated salivary glands.
Locations of the 87A, 87C and 93D sites are indicated.
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Figure 4A-1 A 93D-like puff site is present in all species of
Drosophila. *H-uridine-labeled autoradiograms of polytene
chromosomes of D. melanogaster (A, colcemid treated), D.
ananassae (B & C), D.nasuta (D & E)), D kikkawai (F & G),
and D.hydei (H & 1,) CON, Control and BM, BM-treated,
Note the intense labeling of a single puff site (93D in
D. melanogaster, 21.-2C in D. ananassae, 2R-48A in D.nasuta,
E-I1BC in D.kikkawai and 2-48C in D.hydei) in the colcemid
or BM-treated nucleus (A, from Lakhotia & Mukherjee,
1984 and B-1, from Lakhotia & Singh 1962).

Hovemann et al. 1986). hsre gene in all species of
Drosophila, that have been examined, produces two
primary transcripts, viz., the hsra-n transcript of ~10
to 15kb length (which spans the entire transcription
unit and remains localized in the nucleus) and the
hsro-pre-c transcript of ~1.9kb length (spanning only
the 5" region comprising of the two exons and the
intron). The 1.9kb hsrw-pre-c transcript is typically
spliced to give rise to the cytoplasmic 1.2kb hsrw-c
transcript (Hovemann et al. 1986, Garbe et al. 1986,
Bendena et al. 1989, Fini et al. 1989). The rapid
sequence divergence at this locus in Drosophila
species is perhaps related to its non-coding nature.
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But the production of transcripts of comparable
properties suggests that the architecture of the gene
and its transcripts is more important than the base
sequence itself (Lakhotia et al. 1999).

Profiles of the different hsrw transcripts show
inducer specific variations. Following HS, levels of
all the three transcripts increase markedly. However,
the benzamide and colchicine treatments lead to a
significant increase of only the >10kb long nuclear
hsrw-n (Bendena et al. 1989, Lakhotia & Sharma
1995). This difference seems to be related to the
different effects of HS and amides on transcriptional
and translational activities. As already noted, HS
affects transcriptional as well as translational activities
while the amides affect only chromosomal
transcription without any effect on translational
activity (Lakhotia & Mukherjee 1982). Turnover
patterns of the hsrw-n and the ~1.2kb cytoplasmic
hsro-c transcripts are also different since while the
hsrw-n is stabilized by inhibition of transcription
with Actinomycin D, the hsre-c is stabilized by
protein synthesis inhibitors (Bendena et al. 1989,
Bendena et al. 1991). This differential stability relates
to the nucleus-limited functions of the hsrw-n
transcript (see below) and to a cytoplasmic role of
the hsro-c RNA. In view of a very small but
translatable ORF in the hsrw-c (Fini et al. 1989) and
the stabilization of this transcript species by
translational inhibitors (Bendena et al. 1989), it has
been suggested that translation of the small ORF in
the hsrw-c RNA serves to monitor the “health” of the
cell’s translational machinery (Lakhotia 1989,
Lakhotia & Sharma, 1996).

The hsro Gene is Important for Viability and
Thermo-resistance
In addition to its strong induction by HS and amides,
the hsrw gene is also developmentally expressed in
adynamically regulated manner (Bendena etal. 1991,
Mutsuddi & Lakhotia 1995, Lakhotia et al. 2001). As
may be expected from the production of multiple
transcripts, their dynamic developmental expression
in different tissues and their differential inducibility
by HS and amides, our studies (Mutsuddi & Lakhotia
1995, Lakhotia & Tapadia 1998, Lakhotia et al. 2001)
revealed the promoter to be complex with multiple
regulatory elements in promoter region of the
hsre gene.

Anintensive screen for mutations at the 93D locus
by Mohler & Pardue (1982) did not recover any point
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mutations. In hindsight this appears to be related to
the non-coding nature of this gene so that base
changes are well tolerated, as has actually happened
at this locus during evolution. However, two
small overlapping deletions, viz. Df(3R)e“* and
Df(3R)GC14, whose overlap specifically defines
the HS and amide-inducible hsrw locus (Mohler &
Pardue 1982, Burma & Lakhotia, 1986) have been
informative about functions of this enigmatic gene.
Most of the Df(3R)e%P*/Df(3R)GC14 trans-
heterozygotes (hsre-nullosomic) die as embryo
while the few (~20% of the nullosomics) who survive
to adult stage are weak flies, unable to walk or fly
properly, and which die within a few days (Mohler
& Pardue 1984, Lakhotia & Ray 1996, Lakhotia et al.
1999). Unlike wild type flies, hsro-nullosomics are
relatively poor in acquiring thermotolerance and do
not survive when grown at 31°C (Lakhotia 1987,
Pardue et al. 1990). This suggests that, like the HSP70,
hsrwalso plays important role in thermotolerance.
This is further supported by significant differences
in the levels of the nuclear and cytoplasmic hsrw
transcripts between lines selected and unselected for
thermo-resistance (McColl et al. 1996, McKechnie et
al.1998). In addition, our recent studies on mutations
due to insertion of P-transposon in the promoter
region of the hsrwlocus of D. melanogaster have also
provided significant insight in the way this non-
coding RNA functions (see below).

The hsre-n Transcripts Organize “omega” Speckles
in Nucleoplasm to Regulate the Availability of
hnRNPs for RNA Processing Activities

It has been known for some time (Dangli & Bautz 1983,
reviewed by Lakhotia et al. 1999) that antibodies
against several nuclear non-histone proteins, mostly
belonging to the heterogenous nuclear RNA-binding
family of proteins (hnRNPs, Krecic & Swanson 1999),
specifically bind with the 93D puff in heat shocked
salivary glands of D. melanogaster larvae. We
exploited this information to understand the
functional significance of the association between the
hsrw transcripts and hnRNPs under different genetic
and environmental conditions (Lakhotia et al. 1999,
2001, Prasanth et al. 2000, Rajendra et al. 2001). Unlike
any known RNA-polymerase Il dependent eukaryotic
transcripts, the hsrw-n transcripts are present in the
nucleus, besides at the site of transcription, as small
granules or speckles distributed in nucleoplasm in
close vicinity of chromosomes and whose abundance

S C Lakhotia

varies in cell type specific manner (figure 5, Prasanth
et al. 2000, Lakhotia et al. 2001). The hnRNPs and the
related proteins remain bound either to
transcriptionally active chromatin sites or to the hsro-
n RNA speckles (figure 5). Significantly, the SR-family
of RNA-binding nuclear proteins, which form the well
known inter-chromatin granule clusters (Spector 1993),
do not localize with the hsro-n RNA speckles (Prasanth
et al. 2000, Rajendra et al. 2001). Therefore, the speckles
containing the hsro-n RNA and hnRNPs and therelated
proteins are novel nuclear structures and have been
designated as “omega speckles” (Prasanth et al. 2000).
These studies suggested that this gene’s large nuclear-
limited hsre-n transcript sequesters the varioushnRNPs
and related proteins to regulate their availability for
nuclear RNA processing activities (Lakhotia et al. 1999,
Prasanth et al. 2000). As illustrated in figure 5, all the
nuclear hnRNPs, which are not associated with the
transcriptionally active chromatin sites, colocalize
exclusively with the hsre-n transcripts in the form of
omega speckles in all the cell types of Drosophila
(Lakhotia et al. 1999, 2001, Prasanth et al. 2000, Rajendra
et al. 2001). The presence of the hsrw-n transcripts is
essential for organizing the omega speckles since in the
hsronullosomic (Df(3R)e“P/ Df(3R)GC14) cells, the
omega speckles are completely absent so that the
hnRNPs remaindistributed ina diffuse manner through
the nucleoplasm (Prasanth et al. 2000).

We suggested that the omega speckles are storage
sites for the unengaged hnRNPs and depending upon
the cellular needs, the hnRNPs are dynamically released
from or sequestered in the omega speckles (figure 6,
Lakhotia et al. 1999, Prasanth et al. 2000). It is believed
thatsucharegulated release/withdrawal of thehnRNPs
is important for ensuring the desired splicing and other
processings of the nascent transcripts. As already noted
earlier (table 1), HS causes a drastic reduction in general
transcription and RNA processing activities in the
nucleus. Consequently, most of the nuclear hnRNPs in
heat shocked cells have no substrates (nascent
transcripts) for processing and, therefore, need to be
kept in an inactive state. We have shown (Lakhotia et
al. 1999, Prasanth et al. 2000) that under these conditions,
the omega speckles increase in size (due to the greater
amounts of the hnRNPs being sequestered) and
coalesce with each other to form large aggregates and
finally all of them get localized to the 93D chromosomal
site itself (see figure 6). It is likely that the massive
clustering of omega speckles in fully stressed cells
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Figure 5. Omega speckles in a nucleus in cyst cell from testes of adult D. melanogaster. The hsro-n RNA is present
at the hsro gene locus (arrowhead) and as numerous speckles in the nucleoplasmic space close to the chromatin area
(red speckles in A, seen after RNA:RNA fluorescence in situ hybridization). The HRB87F (hnRNPA1 homolog in D.
melanogaster) loacalizes diffusely over the chromatin but as speckles in the nucleoplasmic space {green speckles in B,
seen after immuno-fluorescent staining with HSBS7F antibody of the same cyst cell as in A). As shown in C (overlap
of RNA:RNA in situ hybridization in A and immunostaining in B), nucleoplasmic speckles formed by the hsro-n RNA
and HSB87F are the same (for details, see Prasanth et al, 2000).

Normal cell with high transcriptional  Moderately heat shocked cell with  Strongly heat shocked cell with
and post-transcriptional processing considerably reduced transcriptional  ajmost complete inhibition
activities and hnRNA processing activities of transcriptional activities

Figure 6. Dynamic re-distribution of the omega speckles in nucleus following heat shock. The upper panel shows the
nuclear distribution of hsro-n transcripts (red fluorescence following in situ RNA:RNA hybridization; chromosomal DNA
shows blue DAPI fluorescence) in partially squashed cells from control (A), 30min heat shocked (B} and 40min heat
shocked (C) Malpighian tubules of D. melanogaster larvae. The lower panel shows diagrammatic representation of the
distribution of hsro-n transcripts and the hnRNPs in these three situations. Chromosome bands are shown in black, the
hnRNPs bound to transcriptionally active chromosomal sites in green and the omega speckles (containing the hsro-n
RNA and the hnRNPs) in orange. In unstressed nuclei (A), the omega speckles are present in close proximity to, but not
on, the chromosomal domains (CD); the omega speckles are also absent from the interchromatin domain (ICD). The
hsro-n transcripts are not present anywhere on the chromosomes, except the 93D site itself (arrowheads in upper panel),
where they remain complexed with the hnRNPs. Following heat shock (B), in parallel with increasing inhibition of
chromoesomal transcription and processing of nascent transcripts, the hnRNPs are gradually withdrawn from chromosomal
locations and accumulate as clusters of omega speckles in close proximity to chromosomal domain in addition to the 93D
site. As the heat shock condition continues and there is near complete inhibition of RNA processing activities, the clusters
of omega speckles completely disappear from the nucleoplasmic space and get exclusively localized at the 93D site itself
(C). Figure modified from Prasanth et al. (2000).
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ensures against illegitimate RNA processing activities
under adverse conditions (Lakhotia et al. 1999, Prasanth
et al. 2000). When the cells recover from heat stress and
resume their normal transcriptional and RNA
processing activities, the hnRNPs are released from
clusters of omega speckles and within Thr, the hnRINPs
get restored to active chromosomal sites and typical
omegaspecklesalso reappearin thenucleoplasm. Recent
studies in our laboratory on over-expressing P-insertion
mutant alleles of hsrwhave provided further evidence
for the importance of association between hnRNPs and
hsrw transcripts. An over-expression of these transcripts
due to promoter mutation would result in excessive
sequestering of the hnRNPs. Since the quantity and
quality of the available hnRNPs affects processing and
alternative splicing of nascent transcripts (Krecic &
Swanson 1999), excessive sequestering of hnRNPs by
hsrotranscripts in the inactive compartment (omega
speckles or their clusters) is expected to have trans-
dominant effect on processing of several nuclear
transcripts. One such P-insertion mutant allele, hsra#*,
shows over-expression of hsro-n transcripts only in cyst
cells in testes, which have important role in sperm
maturation and individualization. The hsra/* mutant
cyst cells display large clusters of omega speckles even
without HS. The excessive sequestering of hnRNPs in
thelarge clusters of omega speckles apparently disrupts
the normal RNA processing activity in cyst cells, the
consequent compromise in their function seems to be
responsible for sterility of the hsra#"homozygous male
flies (Rajendra et al. 2001). In another P-insertion
promoter mutant allele, the hsrwgene is over-expressed
in a variety of 3" instar larval tissues and this is
associated with prolongation of the larval period and
ultimate lethality (Sengupta & Lakhotia 2000 and other
unpublished results). Other recent results (Lakhotia,
Surajit Sarkar & Noopur Thakur, unpublished) show
thatsplicing of the Ddc (dopa decarboxylase) transcripts
in the central nervous system of hsrernullosomic larvae
is aberrant; this seems to correlate with the absence of
omega speckles in these nullosomics (Prasanth et al.
2000) and a consequent abnormal availability of the
hnRNPs etc for the RNAprocessing machinery.
Although the possibility of some RNA species
providing a structural role in sequestering the RNA
processing factors that are not actively engaged in the
post-transcriptional processing at a given time has been
raised in past (Wieghardt et al. 1999), our studies
(Lakhotia et al. 1999, Prasanth et al. 2000) for the first
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timeactuallyidentified thehsro-nRNA asonesuchRNA
species. The discovery of the omega speckles and the
role played by the hsrw-n transcripts in organizing these
speckles thus provides a new paradigm to understand
the regulation of nuclear RNA processing activities. It
is very likely that a regulatory system, comparable to
the omega speckles of Drosophila cells, exists in other
higher organisms, including man, since the post-
transcriptional processing events in the nucleus are
highly conserved (Krecic & Swanson 1999). In certain
pathological conditions in man, it is known that some
of the RNA processing proteins are abnormally
sequestered and this trans-dominantly affects
processing of several other nascent transcripts (see
Singer 1998). Obviously, it is essential to fine tune the
availability of RNA-processing factors in the nucleus in
relation to the specificand dynamically changing cellular .
needs to ensure that the RNA-processing events
progress smoothly in a well coordinated manner.
Therefore, a non-coding RNA, similar to the hsro-n
transcript in Drosophila, must exist in other higher
organisms as well and an active search for this would
be rewarding not only from the basic cell biology point
of view, but from human health point of view also.

Interaction of hsrw with Other Heat Shock Genes
Our earlier studies (for review see Lakhotia 1989,
Lakhotia & Sharma 1996) revealed an intriguing
relation between activities of the 93D, 87A (containing
two copies of HSP70 genes) and 87C (containing three
copies of HSP70 genes) loci. A standard HS results in
high transcriptional activity at the 93D, 87A and 87C
puffs with the 87A and 87C pulffs being equal in size
and showing similar *H-uridine incorporation
(Mukherjee & Lakhotia 1979). However, when HSand
another inducer of 93D (e.g., an amide or recovery
from anoxia) were applied together, the 93D puff was
seennot to incorporate*H-uridineand at the same time
the 87A and 87C loci puffed unequally. Interestingly,
depending upon the specific combination of HS and
the other 93D inducer, the 87A or the 87C puff was the
larger of the two in a highly reproducible manner
(Lakhotia 1987, 1989, Lakhotia et al. 1990, Sharma &
Lakhotia 1995, Lakhotia & Sharma 1996). We
suggested that the hsrw transcripts influence RNA
metabolism at the 87A and 87C sites (Lakhotia 1989,
Sharma & Lakhotia 1995). Our recent observations
(Lakhotia & Prasanth 2001) on the binding of hnRNPs
provide a novel basis for this effect. Some of the
hnRNPs have been reported to bind with the HSP70
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RNA in Drosophila (Hamann & Stratling 1998, Reim
et al. 1999), which during heat shock are normally
completely sequestered by the hsow transcipts (see
above). Our studies show that under conditions when
the hsrw locus is not transcriptionally induced by heat
shock, the hnRINPs continue to remain associated with
several other chromosomal sites, including the 87A
and 87C pulffs (Lakhotia & Prasanth 2001). It appears
that in the absence of a threshold level of hsrw
transcripts during HS, the removal of hnRNPs from
87A and 87C (and some other chromosomal) sites is
affected. Since the hnRNPs have roles in RNA
processing and transport (Krecic & Swanson 1999),
their continued presence at the 87A and 87C sites in
differential amounts may affect puffing of these sites
differently. The functional significance and long term
consequences of the unequal puffing of the two HSP70
puffs and the altered hnRNP binding at these sites
needs to be examined further.

Morcillo et al. (1993) reported that the HSP83
protein gets quickly localized on the 93D puff in the
polytene chromosomes of D. melanogaster after heat
shock. Lakhotia and Ray (1996) showed that recessive
mutation at HSP83 acts as a dominant enhancer of the
lethality associated with the nullosomy for the hsra
gene. As noted earlier, wild type HSP83 chaperone
protein masks a variety of developmental
abnormalities caused by genetic background
(Rutherford & Lindquist 1998). In this context, the
interaction of hsrowith HSP83 is interesting. The hsrw
transcripts may have a role in this homeostasis by
virtue of their involvement in regulation of the
metabolism of hnRNPs, and thus in the pre-mRNA
processing. The binding of HSP83 with hsro
transcripts may also help keep the associated hnRNPs
etc properly chaperoned (Lakhotia et al. 1999).
Mutations at RasI or RaslII genes of D. melanogaster,
which by themselves have no effect on viability in
heterozygous condition, also dominantly enhance the
embryonic lethality due to hsre-nullosomy (Ray &
Lakhotia 1998, Lakhotia et al. 1999).

Fernandez-Funez et al. (2000) reported that -
transposon insertion mutant alleles of hsr@ enhance
the ataxin-1 induced neurodegeneration in
Drosophila. In this context it is interesting that the
hsrw gene is highly expressed in the nervous system
(Lakhotia et al. 2001). Like the earlier noted altered
splicing of Ddc transcripts in the hsrw nullosomic
condition, it appears that the enhancement of ataxin-
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1 phenotypeis also related to perturbations in nascent
RNA processing in hsr@ mutant background.
Alterations in the dynamics of nuclear hnRNPs
resulting from under- or over-expression of hsrw
would have wide-ranging trans-dominant effects on
other gene activities via its role in modulation of the
availability of hnRINPs.

The hsrw gene provides a new paradigm for the
roles of non-coding RNAs in cell’s intricate and
elaborate mechanisms for maintaining homeostasis.

Concluding Remarks

The HS or the stress response has been an extremely
useful paradigm to understand the hierarchies of
regulation of gene activity in a cell. A geneticist exploits
mutations to understand the “normal” function of a
gene. Likewise, the rapid and all pervading, but
transient, perturbations in cellular activities by HS
allow a deeper understanding of normal cell functions.
The stress response paradigm has many applications
in biotechnology and human health care (see Lakhotia
2001a). Increasing numbers of studies are revealing
subtle or more apparent differences in stress response
of different cell types and organisms and their
possible ecological and evolutionary consequences
(Feder & Hoffmann 1999). Since the cell’s survival
under the omnipresent stress conditions is most critical
for the species’ survival, the stress response is a vital
component of any cell’s defense mechanisms.
Therefore, stress biology will continue to remain a
fertile field of study (Lakhotia 2001a). Most of the
studies on stress response have hitherto remained
confined to a few model organisms maintained under
laboratory conditions. It will be necessary to extend
these studies to a variety of organisms living under
naturally varied environmental conditions.
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