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Abstract 

All eukaryotic genomes contain, besides the coding 
infor-mation for amino acids in different proteins, a 
significant amount of noncoding sequences, which may or 
may not be transcribed. In general, the more evolved or 
biologically complex the organisms are, greater is the 
proportion of the noncoding component in their genomes. The 
popularity and success of “central dogma of molecular 
biology” during the last quarter of the 20th century relegated 
the noncoding DNA sequences to a mortifying status of 
“junk” or “selfish”, even though during the pre- “molecular 
biology” days there were good indications that such regions of 
the genome may function in as yet unknown ways. A 
resurgence of studies on the noncoding sequences in various 
genomes during the past several years makes it clear that the 
complex biological organization demands much more than a 
rich proteome. Although the more popularly known 
noncoding RNAs are the small microRNAs and other similar 
species, other types of larger noncoding RNAs with critical 
functions in regulating gene activity at various levels are 
being increasingly identified and characterized. Many 
noncoding RNAs are involved in epigenetic modifications, 
including imprinting of genes. A comprehensive 
understanding of the significance of noncoding DNA 
sequences in eukaryotic genomes is essential for 
understanding the origin and sustenance of complex biological 
organization of multicellular organisms. 
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Introduction 

For the most part of their life cycle, the 
unicellular organisms need to regulate their genetic 
programmes only in temporal axis but the advent of 
multicellularity, and consequent division of labour 
between cells of an organism, necessitated an 
integration of the temporal regulation with the 
spatially different genetic programmes of the various 
cell types present in the organism. The increasing 
biological complexity depends not only on evolution 
of novel “functions” or proteins but also on more 
complex regulatory networks.  A greater importance 
of more complex regulatory networks over creation 
of “new” genes in generation of biological 
complexity was emphasized by evolutionary 
biologists and geneticists even in the “pre-molecular 

biology” era (e.g., see Mayr1). Paradoxically, 
however, the advent of “central dogma of molecular 
biology” and the consequent excitement resulting 
from understanding of functions and regulations of 
individual protein-coding genes during the last 
quarter of 20th century undermined studies on the 
regulatory networks. A strong faith in the “central 
dogma” resulted in the common perception that 
sequences of DNA in the genome that do not have a 
protein-coding function or are not involved in 
production of proteins are likely to be irrelevant. 
Consequently, a majority of molecular biological 
studies during the past few decades were generally 
driven by the concept that the noncoding DNA is 
“junk” or “selfish” or “parasitic”2-4. The sequencing 
of genomes of large number of species, ranging from 
bacteria to human, reestablished the earlier 
inferences of classical geneticists and cytologists that 
much of the DNA in genomes of higher organisms 
does not carry typical “genes” or protein-coding 
genetic information. Interestingly, while to some 
workers this confirmation appeared to strengthen the 
concept of “junk” DNA, it also fuelled a greater 
curiosity for possible functions of the noncoding 
DNA because the proportion of noncoding DNA in 
the genome has, in general, increased with increasing 
biological complexity. Thus while noncoding DNA 
is almost non-existent in bacteria, it can make up as 
much as 90% or more of the genome in higher 
organisms5-7.  

Results of recent comparative genomic studies 
and better appreciation of cellular networks 
reconfirm that the genetic differences between any 
two related species are more due to changes in the 
‘noncoding” DNA rather than in the protein-coding 
genes. Thus while human genome has ~25 fold more 
DNA compared to the fruit fly, the number of 
protein-coding genes appears to be even less than 2-
fold greater. Enhancing the complexity of regulatory 
circuits allows a greater variety of combinations of 
similar numbers of proteins and thus more complex 
networks, which are required to fashion more diverse 
structures and organizations.  
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The primary way in which the genetic 
information affects cell function is by the process of 
transcription resulting in the formation of RNA. 
Classical studies employing metabolic labeling of 
newly synthesized RNA and/or reassociation kinetics 
indicated that a large proportion of nuclear DNA, 
substantially greater in diversity than the estimated 
number of protein-coding genes, was actually 
transcribed and surprisingly, bulk of this 
heterogeneous nuclear RNA (hnRNA) species was 
found to never reach the cytoplasm and thus not 
translated into proteins8-12. Recent genomic and 
RNomic studies have reconfirmed these studies5, 13-15.  

The discovery of post-transcriptional gene 
silencing and subsequent understanding of the 
phenomenon of RNAi16-19 sparked a remarkable 
appreciation of the functional significance of 
noncoding DNA sequences, especially the noncoding 
RNAs. In keeping with this excitement, numerous 
reviews on significance of noncoding DNA are now 
available5, 20-32. In the following, the major pathways 
through which the noncoding sequences in genomes 
may affect cell functions are briefly discussed. 
Specific roles of noncoding RNAs in imprinting are 
discussed by P. K. Gupta in another article in this 
issue (page 51). 

Some noncoding DNA sequences regulate 
transcription of genes and are essential for 
biological complexity 

The sizes of cis- and trans-regulating DNA 
sequences (promoters, enhancers, silencers, boundary 
elements etc) which regulate the expression of 
protein-coding (or other) genes is variable and in 
many cases, these are actually longer than the 
transcribed parts to provide for modular regulation. 
As stated earlier, much of the evolutionary 
differences in related species depend on modulating 
the regulation of a given gene rather than the 
structure or function of the protein encoded by it. 
Since transcription factor binding sites are short 
sequences, rather rapid alterations in regulation of 
genes can occur by small changes in the base 
sequences. Thus new target sites for binding of the 
transcription factors may be created or the existing 
ones eliminated by a few base changes or by 
insertion/mobilization of transposable elements (see 
Wray33 for a recent discussion). Thus one of the very 
important functions of the noncoding DNA 
sequences is to provide for networked regulation of 
transcriptional activity of genes. Additionally, the 
physical organization of chromatin and its higher 
order packaging in the 3-dimensional space of the 
nucleus are critical for cell type specific gene 
expression patterns34-36. However, the extent and 
nature of genomic DNA that is required for providing 
this kind of “information” is as yet little understood.  

Roles of noncoding but transcribed sequences in 
protein coding genes 

Less than 2% of human genomic DNA actually 
accounts for amino acid-coding regions. However, 
the genes coding for proteins also often contain 
substantially greater lengths of transcribed but 
untranslated regions like introns, 5’- and 3’- 
untranslated regions (UTRs) etc. These noncoding 
but transcribed introns and the UTRs, have very 
significant roles in generation of protein diversity 
(through alternative splicing of introns), in regulating 
the half-lives of mRNA and in their 
location/targeting in cells37, 38. A particularly 
remarkable example of the great potential of introns 
in generating protein diversity is the Dscam gene of 
Drosophila which has the potential to generate, 
through alternative splicing, as many as ~38000 
varieties of protein isoforms; these numerous 
isoforms appear to be involved in guiding the 
different axons as they grow to reach their target 
sites39, 40. 

A large variety of noncoding RNAs with vital 
functions are produced in cells 

One group of noncoding RNAs, which has a 
long history of acceptance as being essential for 
RNA processing and translation, includes transfer 
RNAs (tRNA), ribosomal RNAs (rRNA),  small 
nuclear RNAs (snRNA), small nucleolar RNAs 
(snoRNA), small Cajal body-specific RNAs 
(scaRNA) etc41-43.  

The noncoding DNA sequences, which are 
independently transcribed but are neither translated 
nor directly involved with the process of translation, 
are intriguing. As mentioned earlier, the existence of 
such transcripts has been known since 1960s20, 21 but 
these were generally ignored because of the bias 
against “selfish” or “junk” DNA. However, the 
recently renewed interest continues to reveal an 
increasing number of noncoding RNA species, which 
are essential for a variety of basic and vital functions 
in cells.  

Small noncoding RNAs 

The small noncoding RNAs include several 
classes with overlapping or distinct functions. 
MicroRNAs (miRNA) and short-interfering RNAs 
(siRNA) are the smallest functional RNAs ranging in 
size from 19 to 25 nucleotides and have received 
considerable attention during the last ten years since 
they regulate gene activity through RNA interference 
at multiple levels like chromatin organization, 
transcription, post-transcriptional processing, 
stability and translation of mRNA etc. In view of 
their multiple roles, these short RNAs integrate the 
regulatory networks and thus play significant role in 



 45

the origin and evolution of biological complexity44-52. 
Efference RNA (eRNA) and mirtrons refer to 
noncoding RNAs derived from intronic sequences of 
protein coding or other noncoding genes. They also 
function like miRNAs to regulate networks of gene 
activity by interfering with transcription or 
translation of the target7, 53, 54. 

Piwi-interacting RNAs (piRNAs) or repeat-
associated short interfering RNAs (rasiRNAs) are 
germ cell-specific 26-31 nucleotide long RNA 
molecules involved in silencing of mobile genetic 
elements and repetitive sequences55. 

Promoter RNAs (pRNA) are associated with the 
promoter regions of genes and are required for RNA-
directed epigenetic remodeling and transcriptional 
silencing of RNA-targeted promoters by direct 
binding of the antisense strand of siRNAs either to 
DNA or to a sense-stranded RNA corresponding to 
the promoter56.  

tmRNAs (tRNA-like and mRNA-like RNA), also 
known as 10Sa RNA or ssrA RNA, are complex, 
dual-functional, small, stable RNA species present in 
bacteria that mimic both a tRNA and mRNA. They 
recognize and recycle the stalled ribosomes57, 58. 

Guide RNAs (gRNA) are involved in RNA 
editing seen in certain organisms/genes and are part 
of the editosome; they are partially complementary to 
the pre-mRNAs to be edited59, 60.  

Signal recognition particle RNA or the 4.5S and 
SRP RNA in bacteria and eukaryotes, respectively, is 
a major structural component of the signal 
recognition particle (SRP) RNA-protein complex in 
the cytoplasm of cells that binds to the mRNA of 
proteins destined for secretion from the cell61, 62.  

Large noncoding RNAs 

Besides the above families of small noncoding 
RNAs, a variety of larger transcripts with diverse 
functions are known and their number is steadily 
increasing (see 
http://biobases.ibch.poznan.pl/ncRNA62). Some large 
noncoding RNAs, whose functional properties are 
better understood, are discussed below. 

Some noncoding RNAs regulate chromatin 
organization and transcriptional status of entire 
chromosomes or chromosome regions 

Organisms with XX/XY chromosome sex-
determination system, like Drosophila and mammals, 
need dosage compensation to compensate for 
difference in the dosages of sex-chromosome-linked 
genes between the homo- and hetero-gametic sexes63. 
In mammals, dosage compensation is achieved by 
inactivation of one of the two X-chromosomes in 

somatic cells of females64, while in Drosophila, 
single X-chromosome in male cells becomes 
hyperactive to attain the transcriptional level of the 
two X-chromosomes in female cells65, 66. In spite of 
these opposing operative mechanisms, it is 
interesting that in both cases, noncoding RNA 
species are primarily responsible for the specific 
chromatin organization that determines the activity 
levels of the X-chromosomes. The large nucleus-
limited noncoding RNA of the human Xist gene (or 
its homologue in other mammals) is produced only 
by the inactive X-chromosome and the Xist 
transcripts spread in cis to paint the entire length of 
the X-chromosome. The Xist transcripts provide a 
platform for binding of chromatin remodeling 
complexes to keep that X-chromosome in an inactive 
state. It is interesting that the decision to allow Xist 
transcription from only one of the two X-
chromosomes is also based on production of another 
noncoding RNA, the Tsix RNA from the 
complementary strand of the Xist gene (for recent 
reviews, see Yang and Kuroda67 and Wutz and 
Gribnau68). In the case of Drosophila, the single X-
chromosome in male cells becomes hyperactive 
because the roX1 and roX2 noncoding RNA species 
“paint” the entire X-chromosome and thereby allow 
the assembly of protein complexes (the Msl 
complex) which set the X-chromosome transcription 
in male cells at a higher level69-71. Thus both in 
mammals and Drosophila, noncoding RNAs provide 
a mechanism for organized recruitment of the 
required proteins, which establish the desired 
chromatin organization, condensed for inactivity of 
female mammalian X chromosome or loose for 
hyperactivity of male Drosophila X-chromosome.  

In an analogous manner, the monoallelic 
expression of many imprinted genes in mammalian 
cells requiring locally altered chromatin organization 
is regulated by noncoding transcripts67 (also see P. K. 
Gupta in this issue). 

Some noncoding RNA species bind with different 
families of proteins and regulate their activity 

The elaborate RNA processing events in nucleus 
and subsequent transport of the mature mRNA to 
cytoplasm involve a large variety of proteins, many 
of which are RNA-binding. The high dynamicity of 
gene expression, and consequently of the RNA 
processing events, requires the different RNA 
processing and transporting proteins to dynamically 
shuttle between different protein complexes and 
sometimes to also remain in an inactive state. Since 
most of the RNA-processing proteins have long half-
lives and are cyclically recruited to different sites in 
the nucleus, these proteins need to be sequestered 
when inactive. It is likely that their sequestration is 
catalyzed by some RNA molecules specifically 
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produced for such purposes. Some insights into these 
events have been obtained through studies on 
stressed cells since it is known that RNA processing 
and transport are dramatically inhibited in cells 
exposed to heat shock or similar other cellular 
stresses72, 73.  

A complex and dynamic organization of the 
processing factors within the nucleus is reflected in 
the presence of a variety of nucleoplasmic speckles 
and other bodies, besides the more obvious nucleolus 
and chromatin74, 75. A large number of studies have 
shown that conditions which inhibit nuclear 
transcriptional and RNA processing activities, cause 
the different classes of RNA processing proteins to 
get sequestered in distinct nuclear compartments or 
speckles. Some examples are: i) aggregation of the 
various speckled domains like interchromatin 
granules or splicing speckles76-78, omega speckles21, 

79, Lamin A/C speckles77, 80, 81, coiled or Cajal 
bodies82, 83, paraspeckles84 or other heterogeneous 
nuclear RNA binding protein (hnRNP) speckles85 
etc, ii) release of snRNPs from the splicing 
speckles76, iii) formation of novel nuclear stress 
bodies in human cells86, iv) formation of cytoplasmic 
stress granules in plant and several animal cell 
types87. Studies on some of these structures have 
helped identify a few noncoding RNA species which 
regulate the dynamic redistribution of RNA 
processing proteins in relation to cellular activity. 

Studies in our laboratory with Drosophila cells 
have shown that the heat shock RNA omega-nuclear 
or hsrω-n noncoding RNA is essential for organizing 
a special nuclear compartment, the omega speckles, 
for storage/sequestration of the members of hnRNP 
family and other related proteins in normal as well as 
stressed cells21, 79, 88. During development, this 
noncoding RNA is expressed, in a regulated manner, 
in almost all cells types of Drosophila89, 90. Both over 
and under-expression of this noncoding RNA has 
severe consequences for the organism91 (Mallik and 
Lakhotia, unpublished).  

A somewhat similar function seems to be carried 
out by the noncoding satellite III (sat III) transcripts 
in human cells following heat shock92. Heat shock 
induces transcription of the noncoding sat III 
sequences, located on centromeric heterochromatin 
of human chromosomes 9 and 1186. A variety of 
RNA processing proteins, RNA polymerase II and 
heat shock transcription factor etc get sequestered 
with these transcripts as stress granules in heat 
shocked human cells92. 

In both the above cases, the non-coding hsrω-n 
or the sat III transcripts appear to serve an important 
function through sequestering specific classes of 
proteins when they are not required to be active. 

Paraspeckles are also known to contain at least one 
noncoding RNA species84. Such noncoding RNA 
species provide a paradigm for regulation of the 
RNA processing machinery in cells92. It is highly 
likely that analogs of the hsrω-n, sat III or the 
paraspeckle RNA species are involved in regulating 
activities of the other classes of cellular proteins 
involved in RNA metabolism. These remain to be 
discovered. 

A different kind of trans-regulation is seen in the 
case of the non-coding Xlsirts RNA, which along 
with the coding VegT RNA is involved in 
organization of the cytokeratin network within the 
vegetal cortex of Xenopus oocytes, indicating that 
some ncRNAs help maintain the structural integrity 
of eukaryotic cytoskeleton93. 

Another paradigm for the role of noncoding 
RNAs in regulating protein function is the recent 
discovery of the noncoding HSR1 transcripts in 
mammalian, Xenopus, Drosophila as well as 
Caenorhabditis cells whose binding with the heat 
shock factor is essential for activation of the heat 
shock genes under conditions of cellular stress94, 95. 

ncRNA and epigenetic changes 

Many recent studies show that a relatively large 
proportion of ncRNAs are essential for several 
complex molecular and structural epigenetic 
modifications that take place in eukaryotic cells. The 
modulation of chromatin organization leading to 
establishment and maintenance of silencing or 
hyperactivation of the entire X-chromosome in 
mammals or Drosophila, respectively, noted above, 
is one example of the epigenetic changes regulated 
by ncRNAs. “Opposite strand transcription” also 
plays significant roles in epigenetic modifications of 
the Hox gene clusters and thus regulation of their 
developmental expression96, 97. Comparable 
“opposite strand transcripts” are involved in 
regulation of the imprinted genes67. pRNA mediated 
gene regulation at the chromatin level through 
histone methylation/acetylation is another instance of 
epigenetic regulation by ncRNAs56. The double 
stranded NRSE smRNA (Neuron Restrictive 
Silencing Element small modulatory RNA) functions 
as an endogenous inducer of neuronal differentiation 
by directing multipotent neural stem cells towards a 
neuronal lineage thereby acting as a key regulator of 
cell fate choice98. Some ncRNAs also have been 
implicated in DNA methylation and heterochromatin 
formation in centromeric and other regions99, 100. 

Noncoding RNAs as hubs for coordination of 
different cellular networks 

It is known that most of the RNA-binding 
proteins recognize their target RNAs through small 
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sequence and/or structural motifs101. Thus a 
noncoding RNA may provide binding sites for a 
variety of proteins and thereby act as a hub to 
regulate the functional competence of a variety of 
proteins belonging to different networks in the cell91. 
It is significant to note that many of the large 
noncoding RNAs are characterized by rapid sequence 
divergence even between related species, a feature 
that was initially taken as evidence for their being 
“junk” or “selfish”. However, when viewed from the 
viewpoint of evolution of new regulatory circuits, 
this property becomes significant. Since these RNAs 
affect cellular activities by binding with different 
proteins, which need only short target sites, bulk of 
the sequence of such noncoding genes is less 
constrained and, therefore, may accumulate random 
mutations without compromising functions of their 
RNA products. Further, as in the case of evolution of 
new promoter activities, some of these mutations in 
noncoding transcripts may create new protein 
binding sites resulting in “novel” functions. Thus the 
large noncoding RNA species, like the small miRNA 
etc, act as “hubs” which regulate and integrate a 
variety of cellular networks. 

Conclusions 

Understanding gene function in terms of protein 
synthesizing activity has been a major achievement 
of modern biology. It is also obvious that the 
effective proteome in any species can be much larger 
than that originally encoded by the genome due to 
the versatile processes like alternative splicing 
(including trans-splicing), RNA-editing, post-
translational modifications of proteins etc. 
Nevertheless, the enormous diversity in the structure 
and organization of multicellular organisms cannot 
be explained only in terms of the proteome. The 
complexity of biological organization calls for much 
greater complexity of regulation. A correlation 
between the proportion of noncoding DNA and 
biological complexity by itself indicates that such 
DNA sequences, either through their cis-regulatory 
actions or through the production of noncoding 
RNAs, have very significant roles in origin and 
sustenance of biological complexity. The elucidation 
of functions of several noncoding RNA species in 
recent years has encouraged more in depth studies on 
the noncoding DNA component in genomes. In this 
context, a remark of great evolutionary biologist, 
Ernst Mayr1, made prior to the “molecular biology 
revolution”, is worth noting: “The rate of 
evolutionary change in the macromolecules of 
important structural genes is presumably largely 
controlled by the system of regulatory genes. The 
number of new questions this opens up is legion”. 
Appreciation of significance of the noncoding DNA 
has indeed opened up this “legion”. Mayr1 further 

observed “The day will come when much of 
population genetics will have to be rewritten in terms 
of interaction between regulator and structural genes. 
This will be one more nail in the coffin of beanbag 
genetics. It will lead to a strong reinforcement of the 
concept that the genotype of the individual is a whole 
and that the genes of a gene pool form a unit”. While 
during the past three decades the success stories of 
discovery of new proteins and their genes by the 
followers of “central dogma” did not generally 
encourage integrative studies on genome’s functions, 
the time is now ripe to fulfill Mayr’s hope of 
understanding the genomes as integrated entities 
rather than “beanbags” of protein coding genes. In 
the absence of such holistic and integrative 
understanding, biotechnological gene manipulation 
programmes will remain ineffective. 
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